Abstract
Private set intersection (PSI) is an important area of research and has been the focus of many works over the past decades. It describes the problem of finding an intersection between the input sets of at least two parties without revealing anything about the input sets apart from their intersection.
In this paper, we present a new approach to compute the intersection between sets based on a primitive called Oblivious Linear Function Evaluation (OLE). On an abstract level, we use this primitive to efficiently add two polynomials in a randomized way while preserving the roots of the added polynomials. Setting the roots of the input polynomials to be the elements of the input sets, this directly yields an intersection protocol with optimal asymptotic communication complexity \(O(m\kappa )\). We highlight that the protocol is information-theoretically secure against a malicious adversary assuming OLE.
We also present a natural generalization of the 2-party protocol for the fully malicious multi-party case. Our protocol does away with expensive (homomorphic) threshold encryption and zero-knowledge proofs. Instead, we use simple combinatorial techniques to ensure the security. As a result we get a UC-secure protocol with asymptotically optimal communication complexity \(O((n^2+nm)\kappa )\), where n is the number of parties, m is the set size and \(\kappa \) is the security parameter. Apart from yielding an asymptotic improvement over previous works, our protocols are also conceptually simple and require only simple field arithmetic. Along the way we develop techniques that might be of independent interest.
S. Ghosh—Supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement #669255 (MPCPRO), the European Union’s Horizon 2020 research and innovation programme under grant agreement #731583 (SODA) and the Independent Research Fund Denmark project BETHE.
T. Nilges—Part of the research leading to these results was done while the author was at Aarhus University. Supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement #669255 (MPCPRO).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Please see the full version of the paper [15].
- 2.
- 3.
Since this check leaks some information about the inputs, we have to perform the check in a secure manner.
- 4.
Our multi-party PSI functionality uses similar idea as augmented semi-honest multi-party PSI as in previous works [27].
- 5.
The commitment we implicitly use has been used previously in [11], as has the check sub-protocol.
- 6.
In order to achieve our claimed efficiency we actually use UC commitments, but non-malleable commitments are sufficient for the security of the protocol.
- 7.
For ease of notation, here we assume that the commitments are completely sent before \(\mathcal {A} \) commits himself. The very same argument also holds if \(\mathcal {A} \) only received synchronized messages of \(\mathsf {com}_j\) and has to start committing concurrently.
- 8.
For reference see Figure 8 of [36].
References
Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic computation with constant computational overhead. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_8
Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_39
Borodin, A., Moenck, R.: Fast modular transforms. J. Comput. Syst. Sci. 8(3), 366–386 (1974). http://dx.doi.org/10.1016/S0022-0000(74)80029-2
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001
Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection with quasi-linear complexity. IEICE Trans. 95–A(8), 1366–1378 (2012)
Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_19
Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_8
De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_13
De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_13
Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 789–800. ACM Press, November 2013
Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient actively secure two-party computation from oblivious linear function evaluation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2263–2276. ACM Press, October/November 2017
Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with simulation-based security. J. Cryptol. 29(1), 115–155 (2016)
Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1
Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_22
Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set intersection. Cryptology ePrint Archive, Report 2017/1064 (2017). https://eprint.iacr.org/2017/1064
Hallgren, P.A., Orlandi, C., Sabelfeld, A.: Privatepool: privacy-preserving ridesharing. In: 30th IEEE Computer Security Foundations Symposium, CSF 2017, 21–25 August 2017, Santa Barbara, CA, USA, pp. 276–291 (2017)
Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_4
Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. J. Cryptol. 25(3), 383–433 (2012)
Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_8
Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better than custom protocols? In: NDSS 2012. The Internet Society, February 2012
Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communities. In: Proceedings of the 1st ACM Conference on Electronic Commerce, EC 1999, pp. 78–86 (1999)
Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18
Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_26
Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set intersection to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_13
Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_15
Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818–829. ACM Press, October 2016
Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1257–1272. ACM Press, October/November 2017
Meadows, C., Mutchler, D.: Matching secrets in the absence of a continuously available trusted authority. IEEE Trans. Softw. Eng. SE-13(2), 289–292 (1987)
Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: EC, pp. 129–139 (1999)
Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location privacy via private proximity testing. In: NDSS 2011. The Internet Society, February 2011
Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_22
Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: 24th USENIX Security Symposium, USENIX Security 2015, 12–14 August 2015, Washington, D.C., USA, pp. 515–530 (2015)
Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: Proceedings of the 23rd USENIX Security Symposium, 20–22 August 2014, San Diego, CA, USA, pp. 797–812 (2014)
Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension. ACM Trans. Priv. Secur. 21(2), 7:1–7:35 (2018)
Rindal, P., Rosulek, M.: Improved private set intersection against malicious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_9
Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1229–1242. ACM Press, October/November 2017
Sang, Y., Shen, H.: Privacy preserving set intersection based on bilinear groups. In: Proceedings of the Thirty-First Australasian Conference on Computer Science, ACSC 2008, vol. 74. pp. 47–54 (2008)
Shamir, A.: On the power of commutativity in cryptography. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–595. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2_100
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Ghosh, S., Nilges, T. (2019). An Algebraic Approach to Maliciously Secure Private Set Intersection. In: Ishai, Y., Rijmen, V. (eds) Advances in Cryptology – EUROCRYPT 2019. EUROCRYPT 2019. Lecture Notes in Computer Science(), vol 11478. Springer, Cham. https://doi.org/10.1007/978-3-030-17659-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-17659-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17658-7
Online ISBN: 978-3-030-17659-4
eBook Packages: Computer ScienceComputer Science (R0)