Abstract
A set S of vertices in a graph G is a paired dominating set if every vertex of G is adjacent to a vertex in S and the subgraph induced by S contains a perfect matching (not necessarily as an induced subgraph). The minimum cardinality of a paired dominating set of G is the paired domination number of G. This chapter presents a survey of the major results on paired domination with an emphasis on bounds for the paired domination number.
Research of the second and third authors supported in part by the University of Johannesburg.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J. D. Alvarado, S. Dantas, and D. Rautenbach, Perfectly relating the domination, total domination, and paired domination numbers of a graph. Discrete Math.338 (2015), 1424–1431.
M. Blidia, M. Chellali, and T. W. Haynes, Characterizations of trees with equal paired and double domination numbers. Discrete Math.306 (2006), 1840–1845.
B. Bollobás and E. J. Cockayne, Graph theoretic parameters concerning domination, independence and irredundance. J. Graph Theory3 (1979), 241–250.
B. Brešar, P. Dorbec, W. Goddard, B. Hartnell, M. A. Henning, S. Klavžar, and D. F. Rall, Vizing’s conjecture: A survey and recent results. J. Graph Theory69 (2012), 46–76.
B. Bres̆ar, S. Klavz̆ar, and D. F. Rall, Dominating direct products of graphs. Discrete Math.307 (2000), 1636–1642.
B. Bres̆ar, M. A. Henning, and D. F. Rall, Paired domination of Cartesian products of graphs. Util. Math.73 (2007), 255–265.
R. C. Brigham, P. Z. Chinn, and R. D. Dutton: Vertex domination-critical graphs. Networks18 (1988), 173–179.
M. Chellali and T. W. Haynes, Total and paired domination numbers of a tree. AKCE Int. J. Graphs Comb.1 (2004), 69–75.
M. Chellali and T. W. Haynes, On paired and double domination in graphs. Util. Math.67 (2005), 161–171.
L. Chen, C. Lu, and Z. Zeng, Labeling algorithms for paired domination problems in block and interval graphs. J. Combin. Optim.19 (2010), 457–470.
L. Chen, C. Lu, and Z. Zeng, A linear time algorithm for paired domination problem in strongly chordal graphs. Inform. Process. Lett.110 (2009), 20–23.
L. Chen, C. Lu, and Z. Zeng, Hardness results and approximation algorithms for (weighted) paired domination in graphs. Theoret. Comput. Sci.410 (2009), no. 47–49, 5063–5071.
X. G. Chen, W. C. Shiu, and W. H. Chan, Upper bounds on the paired domination number. Appl. Math. Lett.21 (2008), 1194–1198.
X. G. Chen, L. Sun, and H. M. Xing, Paired domination numbers of cubic graphs. (Chinese) Acta Math. Sci. Ser. A Chin. Ed.27 (2007), 166–170.
T. C. E. Cheng, L. Kang, and C. T. Ng, Paired domination on interval and circular-arc graphs. Discrete Appl. Math.155 (2007), 2077–2086.
K. Choudhary, S. Margulies, and I. V. Hicks, A note on total and paired domination of Cartesian product graphs. Electron. J. Combin.20 (2013), no. 3, Paper 25, 9 pp.
W. E. Clark, B. Shekhtman, S. Suen, and D. C. Fisher, Upper bounds for the domination number of a graph. Congr. Numer.132 (1998), 99–123.
W. E. Clark and S. Suen, An inequality related to Vizing’s conjecture. Electron. J. Combin.7 (2000), no.1, Note 4, 3pp.
J. Cyman, M. Dettlaff, M.A. Henning, M. Lemańska, and J. Raczek, Total domination versus paired-domination in regular graphs. Discuss. Math. Graph Theory38 (2018), 573–586.
E. DeLaViña, Q. Liu, R. Pepper, B. Waller, and D. B. West, Some conjectures of Graffiti.pc on total domination. Congr. Numer.185 (2007), 81–95.
N. Dehgardi, S.M. Sheikholeslami, and A. Khodkar, Bounding the paired-domination number of a tree in terms of its annihilation number. Filomat28 (2014), 523–529.
W.J. Desormeaux and M.A. Henning, Paired domination in graphs: a survey and recent results. Util. Math.94 (2014), 101–166.
P. Dorbec and S. Gravier, Paired domination in subdivided star-free graphs. Graphs Combin.26 (2010), 43–49.
P. Dorbec and S. Gravier, Paired domination in P 5-free graphs. Graphs Combin.24 (2008), 303–308.
P. Dorbec, S. Gravier, and M. A. Henning, Paired domination in generalized claw-free graphs. J. Combin. Optim.14 (2007), 1–7.
P. Dorbec, B. Hartnell, and M.A. Henning, Paired versus double domination in K 1,r-free graphs. J. Comb. Optim.27 (2014), 688–694.
P. Dorbec and M. A. Henning, Upper paired domination in claw-free graphs. J. Combin. Optim.22 (2011), 235–251.
P. Dorbec, M. A. Henning, and J. McCoy, Upper total domination versus upper paired domination.Quaest. Math.30 (2007), 1–12.
M. Edwards, Criticality concepts for paired domination in graphs. MS Thesis. University of Victoria, (2006).
M. Edwards, R. G. Gibson, M. A. Henning, and C. M. Mynhardt, Diameter of paired domination edge-critical graphs. Australas. J. Combin.40 (2008), 279–291.
O. Favaron, Bounds on total and paired domination parameters in graphs and claw-free graphs. Erster Aaachner Tag der Graphentheorie, 59–73, Rheinisch-Westfalisch Tech. Hochsch. Lehrstufl II Math Aachen, 2004.
O. Favaron and M. A. Henning, Paired domination in claw-free cubic graphs. Graphs Combin.20 (2004), 447–456.
O. Favaron and M. A. Henning, Bounds on total domination in claw-free cubic graphs. Discrete Math.308 (2008), 3491–3507.
O. Favaron, H. Karami, and S. M. Sheikholeslami, Paired domination number of a graph and its complement. Discrete Math.308 (2010), 6601–6605.
M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the Theory of NP-Completeness, Freeman, New York, 1979.
W. Goddard and M. A. Henning, Domination in planar graphs with small diameter. J. Graph Theory40 (2002), 1–25.
W. Goddard and M. A. Henning, A characterization of cubic graphs with paired domination number three fifths their order. Graphs Combin.25 (2009), 675–692.
T. W. Haynes and M. A. Henning, Paired-domination game played in graphs. Commun. Comb. Optim.4 (2019), 79–94.
T. W. Haynes and M. A. Henning, Trees with large paired domination number. Util. Math.71 (2006), 3–12.
T. W. Haynes, M. A. Henning, and P. J. Slater, Trees with equal domination and paired domination numbers. Ars. Combin.76 (2005), 169–175.
T. W. Haynes and P. J. Slater, Paired domination and the paired domatic number. Congr. Numer.109 (1995), 65–72.
T. W. Haynes and P. J. Slater, Paired domination in graphs. Networks32 (1998), 199–206.
M. A. Henning, Trees with equal total domination and paired domination numbers. Util. Math.69 (2006), 207–218.
M. A. Henning, Graphs with large paired domination number. J. Combin. Optim.13 (2007), 61–78.
M. A. Henning, An upper bound on the paired domination number in terms of the number of edges in the graph. Discrete Math.310 (2010), 2847–2857.
M. A. Henning and J. McCoy, Total domination in planar graphs of diameter two. Discrete Math.309 (2009), 6181–6189.
M. A. Henning, J. McCoy and J. Southey, Graphs with maximum size and given paired domination number. Discrete Appl. Math.170 (2014), 72–82.
M. A. Henning and C. M. Mynhardt, The diameter of paired domination vertex critical graphs. Czechoslovak Math. J.58(133) (2008), no. 4, 887–897.
M. A. Henning and M. D. Plummer, Vertices contained in all or in no minimum paired dominating set of a tree. J. Combin. Optim.10 (2005), 283–294.
M. A. Henning and D. Pradhan, Algorithmic aspects of upper paired-domination in graphs. Theoret. Comput. Sci.804 (2020), 98–114.
M. A. Henning and J. Southey, A characterization of graphs of minimum size having diameter two and no dominating vertex, manuscript (2012).
M. A. Henning and P. D. Vestergaard, Trees with paired domination number twice their domination number. Util. Math.74 (2007), 187–197.
X. Hou, A characterization of (2γ, γ p)-trees. Discrete Math.308 (2008), 3420–3426.
X. Hou and M. Edwards, Paired domination vertex critical graphs. Graphs Combin.24 (2008), 453–459.
X. M. Hou and F. Jiang, Paired domination of Cartesian products of graphs. J. Math. Res. Exposition30 (2010), 181–185.
S. Huang and E. Shan, A note on the upper bound for the paired domination number of a graph with minimum degree at least two. Networks57 (2011), 115–116.
S. Huang, E. Shan, and L. Kang, Perfect matchings in paired domination vertex critical graphs. J. Combin. Optim.23 (2012), 507–518.
S. Huang, L. Kang, and E. Shan, Paired-domination in claw-free graphs. Graphs Combin.29 (2013), 1777–1794.
L. Kang, M. Y. Sohn, and T. C. E. Cheng, Paired domination in inflated graphs. Theoret. Comput. Sci.320 (2004), 485–494.
E. Lappas, S. D. Nikolopoulos, and L. Palios, An O(n)-time algorithm for the paired domination problem on permutation graphs. European J. Combin.34 (2013), 593–608.
C. Lin and H. Tu, A linear-time algorithm for paired-domination on circular-arc graphs. Theoret. Comput. Sci.591 (2015), 99–105.
C. Lu, R. Mao, and B. Wang, Paired-domination in claw-free graphs with minimum degree at least four. Ars Combin. 139 (2018), 393–409.
C. Lu, B. Wang, K. Wang, and Y. Wu, Paired-domination in claw-free graphs with minimum degree at least three. Discrete Appl. Math.257 (2019), 250–259.
C. Lu, C. Wang, and K. Wang, Upper bounds for the paired-domination numbers of graphs. Graphs Combin. 32 (2016), 1489–1494.
G. MacGillivray and K. Seyffarth, Domination numbers of planar graphs. J. Graph Theory22 (1996), 213–229.
H. Müller and A. Brandstädt, The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs, Theor. Comput. Sci.53 (1987), 257–265.
C. M. Mynhardt and M. Schurch, Paired domination in prisms of graphs. Discuss. Math. Graph Theory31 (2011), 5–23.
B.S. Panda and D. Pradhan, A linear time algorithm for computing a minimum paired-dominating set of a convex bipartite graph. Discrete Appl. Math.161 (2013), 1776–1783.
P. Paulraja and S. Sampathkumar, A note on paired domination number of tensor product of graphs. Bull. Inst. Combin. Appl.60 (2010), 79–85.
D. Pradhan and B. S. Panda, Computing a minimum paired-dominating set in strongly orderable graphs. Discrete Appl. Math.253 (2019), 37–50.
K. E. Proffit, T. W. Haynes, and P.J. Slater, Paired domination in grid graphs. Congr. Numer.150 (2001), 161–172.
H. Qiao, L. Kang, M. Cardel, and D. Z. Du, Paired domination of trees. Dedicated to Professor J.B. Rosen on his 80th birthday. J. Global Optim.25 (2003), 43–54.
J. Raczek, Lower bound on the paired domination number of a tree. Australas. J. Combin.34 (2006), 343–347.
O. Schaudt, Paired and induced paired domination in (E, net)-free graphs. Discuss. Math. Graph Theory32 (2012), 473–485.
O. Schaudt, Total domination versus paired domination. Discuss. Math. Graph Theory32 (2012), 435–447.
E. Shan, L. Kang, and M. A. Henning, A characterization of trees with equal total domination and paired domination numbers. Australas. J. Combin.30 (2004), 31–39.
D. S. Studer, T. W. Haynes, and L. M. Lawson, Induced paired domination in graphs. Ars Combin.57 (2000), 111–128.
W. Ulatowski, All graphs with paired-domination number two less than their order. Opusc. Math.33 (2013), 763–783.
W. Ulatowski, The paired-domination and the upper paired-domination numbers of graphs. Opusc. Math.35 (2015), 127–135.
V. G. Vizing, A bound on the external stability number of a graph. Dokl. Akad. Nauk SSSR164 (1965), 729–731.
V. G. Vizing, Some unsolved problems in graph theory. Uspehi Mat. Nauk23 (1968), (144), 117–134.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Desormeaux, W.J., Haynes, T.W., Henning, M.A. (2020). Paired Domination in Graphs. In: Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds) Topics in Domination in Graphs. Developments in Mathematics, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-030-51117-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-51117-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51116-6
Online ISBN: 978-3-030-51117-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)