Nothing Special   »   [go: up one dir, main page]

Skip to main content

Merkle Tree Traversal Revisited

  • Conference paper
Post-Quantum Cryptography (PQCrypto 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5299))

Included in the following conference series:

  • 2534 Accesses

Abstract

We propose a new algorithm for computing authentication paths in the Merkle signature scheme. Compared to the best algorithm for this task, our algorithm reduces the worst case running time considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berman, P., Karpinski, M., Nekrich, Y.: Optimal trade-off for Merkle tree traversal. Theoretical Computer Science 372(1), 26–36 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buchmann, J., Coronado, C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS — an improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Coronado, C.: On the security and the efficiency of the Merkle signature scheme. Cryptology ePrint Archive, Report 2005/192 (2005), http://eprint.iacr.org/

  5. Dods, C., Smart, N., Stam, M.: Hash based digital signature schemes. In: Smart, N. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing, pp. 212–219. ACM Press, New York (1996)

    Google Scholar 

  7. Jakobsson, M., Leighton, T., Micali, S., Szydlo, M.: Fractal Merkle tree representation and traversal. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 314–326. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Lamport, L.: Constructing digital signatures from a one way function. Technical Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

    Google Scholar 

  9. Lenstra, A.K., Verheul., E.R.: Selecting cryptographic key sizes. Journal of Cryptology 14(4), 255–293 (2001); updated version (2004), http://plan9.bell-labs.com/who/akl/index.html

    Article  MathSciNet  MATH  Google Scholar 

  10. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

    Google Scholar 

  11. Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Practical fast signatures using fractal merkle tree traversal. In: IEEE – 24th Convention of Electrical and Electronics Engineers in Israel, pp. 255–259 (2006)

    Google Scholar 

  12. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proc. 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  13. Szydlo, M.: Merkle tree traversal in log space and time (preprint, 2003), http://www.szydlo.com/

  14. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchmann, J., Dahmen, E., Schneider, M. (2008). Merkle Tree Traversal Revisited. In: Buchmann, J., Ding, J. (eds) Post-Quantum Cryptography. PQCrypto 2008. Lecture Notes in Computer Science, vol 5299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88403-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88403-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88402-6

  • Online ISBN: 978-3-540-88403-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics