Abstract
We propose a new algorithm for computing authentication paths in the Merkle signature scheme. Compared to the best algorithm for this task, our algorithm reduces the worst case running time considerably.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berman, P., Karpinski, M., Nekrich, Y.: Optimal trade-off for Merkle tree traversal. Theoretical Computer Science 372(1), 26–36 (2007)
Buchmann, J., Coronado, C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS — an improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006)
Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007)
Coronado, C.: On the security and the efficiency of the Merkle signature scheme. Cryptology ePrint Archive, Report 2005/192 (2005), http://eprint.iacr.org/
Dods, C., Smart, N., Stam, M.: Hash based digital signature schemes. In: Smart, N. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing, pp. 212–219. ACM Press, New York (1996)
Jakobsson, M., Leighton, T., Micali, S., Szydlo, M.: Fractal Merkle tree representation and traversal. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 314–326. Springer, Heidelberg (2003)
Lamport, L.: Constructing digital signatures from a one way function. Technical Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)
Lenstra, A.K., Verheul., E.R.: Selecting cryptographic key sizes. Journal of Cryptology 14(4), 255–293 (2001); updated version (2004), http://plan9.bell-labs.com/who/akl/index.html
Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)
Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Practical fast signatures using fractal merkle tree traversal. In: IEEE – 24th Convention of Electrical and Electronics Engineers in Israel, pp. 255–259 (2006)
Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proc. 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)
Szydlo, M.: Merkle tree traversal in log space and time (preprint, 2003), http://www.szydlo.com/
Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buchmann, J., Dahmen, E., Schneider, M. (2008). Merkle Tree Traversal Revisited. In: Buchmann, J., Ding, J. (eds) Post-Quantum Cryptography. PQCrypto 2008. Lecture Notes in Computer Science, vol 5299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88403-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-88403-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88402-6
Online ISBN: 978-3-540-88403-3
eBook Packages: Computer ScienceComputer Science (R0)