Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hash Based Digital Signature Schemes

  • Conference paper
Cryptography and Coding (Cryptography and Coding 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3796))

Included in the following conference series:

Abstract

We discuss various issues associated with signature schemes based solely upon hash functions. Such schemes are currently attractive in some limited applications, but their importance may increase if ever a practical quantum computer was built. We discuss issues related to both their implementation and their security. As far as we are aware this is the first complete treatment of practical implementations of hash based signature schemes in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. ANSI X9.63. Public Key Cryptography for the Financial Services Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography (October 1999), Working Draft

    Google Scholar 

  2. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Bleichenbacher, D., Maurer, U.M.: Directed acyclic graphs, one-way functions and digital signatures. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 75–82. Springer, Heidelberg (1994)

    Google Scholar 

  4. Bleichenbacher, D., Maurer, U.: Optimal tree-based one-time digital signature schemes. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 363–374. Springer, Heidelberg (1996)

    Google Scholar 

  5. Bleichenbacher, D., Maurer, U.: On the efficiency of one-time digital signature schemes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 145–158. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Buchmann, J., Coronado, C., Döring, M., Engelbert, D., Ludwig, C., Overbeck, R., Schmidt, A., Vollmer, U., Weinmann, R.-P.: Post-quantum signatures (2004) (Preprint)

    Google Scholar 

  7. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. Journal of Cryptology 9(1), 35–67 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Håstad, J., Näslund, M.: Practical construction and analysis of pseudo-randomness primitives. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 442–459. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Hauser, R., Steiner, M., Waidner, M.: Micro-payments based on iKP. Technical report, IBM Research (1996)

    Google Scholar 

  10. Hevia, A., Micciancio, D.: The provable security of graph-based one-time signatures and extensions to algebraic signature schemes. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 379–396. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Lamport, L.: Constructing digital signatures from a one-way function. SRI International, CSL-98 (1979)

    Google Scholar 

  12. Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica 7(4), 357–363 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lipton, R.J., Ostrovsky, R.: Micro-payments via efficient coin-flipping. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 1–15. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Lomas, M. (ed.): Security Protocols 1996. LNCS, vol. 1189. Springer, Heidelberg (1996)

    Google Scholar 

  15. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: CRC-Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  16. Merkle, R.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

    Google Scholar 

  17. Mitzenmacher, M., Perrig, A.: Bounds and improvements for BiBa singature schemes. Technical report, Harvard University, Cambridge, Massachusetts (2002)

    Google Scholar 

  18. Pedersen, T.P.: Electronic payments of small amount. In: Lomas [14], pp. 59–68.

    Google Scholar 

  19. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol. In: Reiter, M., Samarati, P. (eds.) CCS 2001, pp. 28–37. ACM Press, New York (2001)

    Chapter  Google Scholar 

  20. Reyzin, L., Reyzin, N.: Better than BiBa: Short one-time signatures with fast signing and verifying. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 144–153. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Rivest, R.L., Shamir, A.: PayWord and MicroMint: Two simple micropayment schemes. In: Lomas [14], pp. 69–78.

    Google Scholar 

  22. Simon, D.R.: Finding collisions on a one-way street: Can secure hash functions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dods, C., Smart, N.P., Stam, M. (2005). Hash Based Digital Signature Schemes. In: Smart, N.P. (eds) Cryptography and Coding. Cryptography and Coding 2005. Lecture Notes in Computer Science, vol 3796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11586821_8

Download citation

  • DOI: https://doi.org/10.1007/11586821_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30276-6

  • Online ISBN: 978-3-540-32418-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics