Nothing Special   »   [go: up one dir, main page]

Skip to main content

Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic Framework

  • Conference paper
Artificial Evolution (EA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4926))

Abstract

We present GP-HH, a framework for evolving local-search 3-SAT heuristics based on GP. The aim is to obtain “disposable” heuristics which are evolved and used for a specific subset of instances of a problem. We test the heuristics evolved by GP-HH against well-known local-search heuristics on a variety of benchmark SAT problems. Results are very encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbass, H.A.: MBO: Marriage in honey bees optimization - A haplometrosis polygynous swarming approach. In: Proceedings of the, Congress on Evolutionary Computation CEC2001, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-30. pp. 207–214, IEEE Press, Los Alamitos (2001)

    Google Scholar 

  2. Boyan, J., Moore, A.: Learning evaluation functions to improve optimization by local search. Journal of Machine Learning Research 1, 77–112 (2000)

    Article  Google Scholar 

  3. Burke, E.K., Hyde, M.R., Kendall, G.: Evolving bin packing heuristics with genetic programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 860–869. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer Academic Publishers, Dordrecht (2003)

    Chapter  Google Scholar 

  5. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. Journal of Heuristics 9(6), 451–470 (2003)

    Article  Google Scholar 

  6. Burke, E.K., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling problems. Journal of Scheduling 9(2), 115–132 (2006)

    Article  MATH  Google Scholar 

  7. Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) Proceedings of the 2002 Congress on Evolutionary Computation CEC2002, pp. 1185–1190. IEEE Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fukunaga, A.: Automated discovery of composite SAT variable selection heuristics. In: Proceedings of the National Conference on Artificial Intelligence, pp. 641–648. AAAI, Menlo Park (2002)

    Google Scholar 

  10. Fukunaga, A.: Evolving local search heuristics for SAT using genetic programming. In: Deb, K., al., e. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 483–494. Springer, Heidelberg (2004)

    Google Scholar 

  11. Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for sat. In: Proc. of AAAI-1993, Washington, DC, pp. 28–33 (1993)

    Google Scholar 

  12. Gottlieb, J., Marchiori, E., Rossi, C.: Evolutionary algorithms for the satisfiability problem. Evol. Comput. 10(1), 35–50 (2002)

    Article  Google Scholar 

  13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

    MATH  Google Scholar 

  14. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  15. Marchiori, E., Rossi, C.: A flipping genetic algorithm for hard 3-SAT problems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H, Honavar, V., Jakiela, M., Smith, R.E., (eds). Proceedings of the Genetic and Evolutionary Computation Conference Orlando, Florida, USA, 13-17, 1999, vol. 1, pp. 393–400, Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  16. Poli, R., Woodward, J., Burke, E.: A histogram-matching approach to the evolution of bin-packing strategies. In: Proceedings of the IEEE Congress on Evolutionary Computation, Singapore (accepted, 2007)

    Google Scholar 

  17. Rossi, C., Marchiori, E., Kok, J.N.: An adaptive evolutionary algorithm for the satisfiability problem. SAC 1, 463–469 (2000)

    Article  Google Scholar 

  18. Schuurmans, D., Southey, F.: Local search characteristics of incomplete SAT procedures. Artificial Intelligence 132(2), 121–150 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Selman, B., Kautz, H.: Domain-independent extensions to GSAT: solving large structured satisfiability problems. In: Proceedings of the International Joint Conference on Artificial Intelligence(IJCAI-1993), Chambéry, France (1993)

    Google Scholar 

  20. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI 1994), Seattle, pp. 337–343 (1994)

    Google Scholar 

  21. Selman, B., Levesque, H.J., Mitchell, D.: A new method for solving hard satisfiability problems. In: Rosenbloom, P., Szolovits, P. (eds.) Proceedings of the Tenth National Conference on Artificial Intelligence, Menlo Park, California, pp. 440–446. AAAI Press, Menlo Park (1992)

    Google Scholar 

  22. Silva, D.L., O’Brien, R., Soubeiga, E.: An ant algorithm hyperheuristic for the project presentation scheduling problem. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) Proceedings of the 2005 IEEE Congress on Evolutionary Computation, pp. 92–99 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nicolas Monmarché El-Ghazali Talbi Pierre Collet Marc Schoenauer Evelyne Lutton

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bader-El-Den, M., Poli, R. (2008). Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic Framework . In: Monmarché, N., Talbi, EG., Collet, P., Schoenauer, M., Lutton, E. (eds) Artificial Evolution. EA 2007. Lecture Notes in Computer Science, vol 4926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79305-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79305-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79304-5

  • Online ISBN: 978-3-540-79305-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics