Abstract
We present GP-HH, a framework for evolving local-search 3-SAT heuristics based on GP. The aim is to obtain “disposable” heuristics which are evolved and used for a specific subset of instances of a problem. We test the heuristics evolved by GP-HH against well-known local-search heuristics on a variety of benchmark SAT problems. Results are very encouraging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbass, H.A.: MBO: Marriage in honey bees optimization - A haplometrosis polygynous swarming approach. In: Proceedings of the, Congress on Evolutionary Computation CEC2001, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-30. pp. 207–214, IEEE Press, Los Alamitos (2001)
Boyan, J., Moore, A.: Learning evaluation functions to improve optimization by local search. Journal of Machine Learning Research 1, 77–112 (2000)
Burke, E.K., Hyde, M.R., Kendall, G.: Evolving bin packing heuristics with genetic programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 860–869. Springer, Heidelberg (2006)
Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer Academic Publishers, Dordrecht (2003)
Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. Journal of Heuristics 9(6), 451–470 (2003)
Burke, E.K., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling problems. Journal of Scheduling 9(2), 115–132 (2006)
Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) Proceedings of the 2002 Congress on Evolutionary Computation CEC2002, pp. 1185–1190. IEEE Press, Los Alamitos (2002)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)
Fukunaga, A.: Automated discovery of composite SAT variable selection heuristics. In: Proceedings of the National Conference on Artificial Intelligence, pp. 641–648. AAAI, Menlo Park (2002)
Fukunaga, A.: Evolving local search heuristics for SAT using genetic programming. In: Deb, K., al., e. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 483–494. Springer, Heidelberg (2004)
Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for sat. In: Proc. of AAAI-1993, Washington, DC, pp. 28–33 (1993)
Gottlieb, J., Marchiori, E., Rossi, C.: Evolutionary algorithms for the satisfiability problem. Evol. Comput. 10(1), 35–50 (2002)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA (1992)
Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)
Marchiori, E., Rossi, C.: A flipping genetic algorithm for hard 3-SAT problems. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H, Honavar, V., Jakiela, M., Smith, R.E., (eds). Proceedings of the Genetic and Evolutionary Computation Conference Orlando, Florida, USA, 13-17, 1999, vol. 1, pp. 393–400, Morgan Kaufmann, San Francisco (1999)
Poli, R., Woodward, J., Burke, E.: A histogram-matching approach to the evolution of bin-packing strategies. In: Proceedings of the IEEE Congress on Evolutionary Computation, Singapore (accepted, 2007)
Rossi, C., Marchiori, E., Kok, J.N.: An adaptive evolutionary algorithm for the satisfiability problem. SAC 1, 463–469 (2000)
Schuurmans, D., Southey, F.: Local search characteristics of incomplete SAT procedures. Artificial Intelligence 132(2), 121–150 (2001)
Selman, B., Kautz, H.: Domain-independent extensions to GSAT: solving large structured satisfiability problems. In: Proceedings of the International Joint Conference on Artificial Intelligence(IJCAI-1993), Chambéry, France (1993)
Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI 1994), Seattle, pp. 337–343 (1994)
Selman, B., Levesque, H.J., Mitchell, D.: A new method for solving hard satisfiability problems. In: Rosenbloom, P., Szolovits, P. (eds.) Proceedings of the Tenth National Conference on Artificial Intelligence, Menlo Park, California, pp. 440–446. AAAI Press, Menlo Park (1992)
Silva, D.L., O’Brien, R., Soubeiga, E.: An ant algorithm hyperheuristic for the project presentation scheduling problem. In: Fogel, D.B., El-Sharkawi, M.A., Yao, X., Greenwood, G., Iba, H., Marrow, P., Shackleton, M. (eds.) Proceedings of the 2005 IEEE Congress on Evolutionary Computation, pp. 92–99 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bader-El-Den, M., Poli, R. (2008). Generating SAT Local-Search Heuristics Using a GP Hyper-Heuristic Framework . In: Monmarché, N., Talbi, EG., Collet, P., Schoenauer, M., Lutton, E. (eds) Artificial Evolution. EA 2007. Lecture Notes in Computer Science, vol 4926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79305-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-79305-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79304-5
Online ISBN: 978-3-540-79305-2
eBook Packages: Computer ScienceComputer Science (R0)