Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Design of Hybrid Stochastic Local Search Algorithms

  • Conference paper
Hybrid Metaheuristics (HM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7919))

Included in the following conference series:

Abstract

Many stochastic local search (SLS) methods rely on the manipulation of single solutions at each of the search steps. Examples are iterative improvement, iterated local search, simulated annealing, variable neighborhood search, and iterated greedy. These SLS methods are the basis of many state-of-the-art algorithms for hard combinatorial optimization problems. Often, several of these SLS methods are combined with each other to improve performance. We propose here a practical, unified structure that encompasses several such SLS methods. The proposed structure is unified because it integrates these metaheuristics into a single structure from which we can not only instantiate each of them, but we also can generate complex combinations and variants. Moreover, the structure is practical since we propose a method to instantiate actual algorithms for practical problems in a semi-automatic fashion. The method presented in this work implements a general local search structure as a grammar; an instantiation of such a grammar is a program that can be compiled into executable form. We propose to find the appropriate grammar instantiation for a particular problem by means of automatic configuration. The result is a semi-automatic system that, with little human effort, is able to generate powerful hybrid SLS algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search heuristics. IEEE Transactions on Evolutionary Computation 16(7), 406–417 (2012)

    Article  Google Scholar 

  3. Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: A framework for the reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

    Article  Google Scholar 

  4. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)

    Google Scholar 

  5. Du, J., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard. Mathematics of Operations Research 15(3), 483–495 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubois-Lacoste, J.: A study of Pareto and Two-Phase Local Search Algorithms for Biobjective Permutation Flowshop Scheduling. Master’s thesis, IRIDIA, Université Libre de Bruxelles, Belgium (2009)

    Google Scholar 

  7. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Computers & Operations Research 38(8), 1219–1236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glover, F.: Tabu search – Part I. INFORMS Journal on Computing 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  10. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2005)

    MATH  Google Scholar 

  12. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)

    MATH  Google Scholar 

  13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

    Google Scholar 

  15. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: Framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, ch. 9, 2nd edn., pp. 363–397. Springer (2010)

    Google Scholar 

  16. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: Automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: 7th International Conference on Learning and Intelligent Optimization, LION 7. LNCS. Springer (to appear, 2013)

    Google Scholar 

  17. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic programming: A survey. Genetic Programming and Evolvable Machines 11(3-4), 365–396 (2010)

    Article  Google Scholar 

  18. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing 20(3), 451–471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA 11(1), 91–95 (1983)

    Article  Google Scholar 

  20. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization – Algorithms and Complexity. Prentice Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  21. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research 177(3), 2033–2049 (2007)

    Article  MATH  Google Scholar 

  22. Taillard, É.D.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64(2), 278–285 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marmion, ME., Mascia, F., López-Ibáñez, M., Stützle, T. (2013). Automatic Design of Hybrid Stochastic Local Search Algorithms. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds) Hybrid Metaheuristics. HM 2013. Lecture Notes in Computer Science, vol 7919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38516-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38516-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38515-5

  • Online ISBN: 978-3-642-38516-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics