Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing Error Distance of Reed-Solomon Codes

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7287))

Abstract

Under polynomial time reduction, the maximum likelihood decoding of a linear code is equivalent to computing the error distance of a received word. It is known that the decoding complexity of standard Reed-Solomon codes at certain radius is at least as hard as the discrete logarithm problem over certain large finite fields. This implies that computing the error distance is hard for standard Reed-Solomon codes. Using the Weil bound and a new sieve for distinct coordinates counting, we are able to compute the error distance for a large class of received words. This significantly improves previous results in this direction. As a corollary, we also improve the existing results on the Cheng-Murray conjecture about the complete classification of deep holes for standard Reed-Solomon codes.

This work is partially supported by NSF of the USA and by the National Natural Science Foundation of China (Grant No.60910118 and 61133013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berlekamp, E., Welch, L.: Error correction of algebraic block codes. U.S. Patent Number 4633470 (1986)

    Google Scholar 

  2. Cafure, A., Matera, G., Privitelli, M.: Singularities of symmetric hypersurfaces and an application to Reed-Solomon codes. arXiv 1109.2265v1 (September 10, 2011)

    Google Scholar 

  3. Cheng, Q., Murray, E.: On Deciding Deep Holes of Reed-Solomon Codes. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 296–305. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Cheng, Q., Wan, D.: On the list and bounded distance decodability of Reed-Solomon codes. SIAM J. Comput. 37(1), 195–209 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, Q., Wan, D.: Complexity of decoding positive-rate Reed-Solomon codes. IEEE Trans. Inform. Theory 56(10), 5217–5222 (2010)

    Article  MathSciNet  Google Scholar 

  6. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Trans. Inform. Theory 45(6), 1757–1767 (1995)

    Article  MathSciNet  Google Scholar 

  7. Guruswami, V., Vardy, A.: A Maximum-likelihood decoding of Reed-Solomon codes is NP-Hard. IEEE Trans. Inform. Theory 51(7), 2249–2256 (2005)

    Article  MathSciNet  Google Scholar 

  8. Li, J.Y., Wan, D.: On the subset sum problem over finite fields. Finite Fields Appl. 14, 911–929 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, J.Y., Wan, D.: A new sieve for distinct coordinate counting. Science China Mathematics 53(9), 2351–2362 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, J.Y., Wan, D.: Counting subset sums of finite abelian groups. Journal of Combinatorial Theory Series A 119(1) (January 2012)

    Google Scholar 

  11. Li, J.Y., Wan, D.: On error distance of Reed-Solomon codes. Science in China Mathematics 51(11), 1982–1988 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liao, Q.: On Reed-Solomon Codes. Chinese Annals of Mathematics Series B 32B(1), 89–98 (2011)

    Article  Google Scholar 

  13. Sudan, M.: Decoding of Reed-Solomon codes beyond the error-correction bound. J. Complexity 13, 180–193 (2007)

    Article  MathSciNet  Google Scholar 

  14. Wan, D.: Generators and irreducible polynomials over finite fields. Mathematics of Computation 66, 119–1212 (1997)

    Article  Google Scholar 

  15. Zhu, G., Wan, D.: An asymptotic formula for counting subset sums over subgroups of finite fields. Finite Fields Appl. (2011), doi:10.1016/j.ffa.2011.07.010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, G., Wan, D. (2012). Computing Error Distance of Reed-Solomon Codes. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29952-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29951-3

  • Online ISBN: 978-3-642-29952-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics