Abstract
Power decoding, or “decoding by virtual interleaving”, of Reed–Solomon codes is a method for unique decoding beyond half the minimum distance. We give a new variant of the Power decoding scheme, building upon the key equation of Gao. We show various interesting properties such as behavioural equivalence to the classical scheme using syndromes, as well as a new bound on the failure probability when the powering degree is 3.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gao, S.: A new algorithm for decoding Reed-Solomon codes. In: Communications, Information and Network Security, no. 712 in S. Eng. and Comp. Sc., pp. 55–68. Springer (2003)
Nielsen, J.S.R.: Generalised multi-sequence shift-register synthesis using module minimisation. In: Proceedings of IEEE ISIT, Istanbul, 882–886 (2013)
Nielsen, J.S.R.: List decoding of algebraic codes. Ph.D. thesis, Technical University of Denmark (2013). Available at jsrn.dk
Roth, R.: Introduction to Coding Theory. Cambridge University Press, New York (2006)
Schmidt, G., Sidorenko, V., Bossert, M.: Syndrome decoding of Reed-Solomon codes beyond half the minimum distance based on shift-register synthesis. IEEE Trans. Inf. Theory 56(10), 5245–5252 (2010)
Sidorenko, V., Bossert, M.: Fast skew-feedback shift-register synthesis. Designs, Codes Cryptogr. 70, 55–67 (2014)
Stein, W.A.: Sage Mathematics Software. http://www.sagemath.org (2014)
Sudan, M.: Decoding of Reed–Solomon codes beyond the error-correction bound. J. Complex. 13(1), 180–193 (1997)
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, Cambridge (2012)
Zeh, A., Wachter, A., Bossert, M.: Unambiguous decoding of generalized Reed–Solomon codes beyond half the minimum distance. In: Proceedings of IZS, Zurich, 63–66 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nielsen, J.S.R. (2015). Power Decoding of Reed–Solomon Codes Revisited. In: Pinto, R., Rocha Malonek, P., Vettori, P. (eds) Coding Theory and Applications. CIM Series in Mathematical Sciences, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-17296-5_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-17296-5_32
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-17295-8
Online ISBN: 978-3-319-17296-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)