Nothing Special   »   [go: up one dir, main page]

Skip to main content

Neural Network Control of Nonlinear Time-Delay System with Unknown Dead-Zone and Its Application to a Robotic Servo System

  • Conference paper
Trends in Intelligent Robotics (FIRA 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 103))

Included in the following conference series:

Abstract

An adaptive controller is proposed for a class of nonlinear systems with unknown time-varying delays and a dead-zone input. Taking the dead-zone as a part of the system dynamics, the construction of the dead-zone inverse model is not needed and thus the characteristic parameters of the dead-zone are not necessarily known. Unknown time delays are handled by introducing improved Lyapunov-Krasovskii functions, where the requirements on the delayed functions/control coefficients are further relaxed without the singularity problem. A novel high-order neural network with only a scalar weight parameter is developed to approximate unknown nonlinearities. The closed-loop system is proved to be semi-globally uniformly ultimately bounded (SGUUB). Experiments on a robotic servo system are provided to verify the reliability of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tao, G., Kokotovic, P.V.: Adaptive Control of Systems with Actuator and Sensor Nonlinearities. Wiley, New York (1996)

    MATH  Google Scholar 

  2. Tao, G., Lewis, F.L.: Adaptive Control of Nonsmooth Dynamic Systems. Springer, London (2003)

    Google Scholar 

  3. Ibrir, S., Xie, W.F., Su, C.Y.: Adaptive tracking of nonlinear systems with non-symmetric dead-zone input. Automatica 43, 522–530 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Selmic, R.R., Lewis, F.L.: Deadzone compensation in motion control systems using neural networks. IEEE. Trans. Automat. Contr. 45, 602–613 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, T.P., Ge, S.S.: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica 44, 1895–1903 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou, J.: Decentralized adaptive control for large-scale time-delay systems with dead-zone input. Automatica 44, 1790–1799 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang, J.Q., Lewis, F.L.: Neural-network predictive control for nonlinear dynamic systems with time delay. IEEE Trans. Neural Netw. 14, 377–389 (2003)

    Article  Google Scholar 

  8. Na, J., Ren, X.M., Huang, H.: Time-delay positive feedback control for nonlinear time-delay systems with neural network compensation. ACTA Automat. Sin. 34, 1196–1203 (2008)

    Article  MathSciNet  Google Scholar 

  9. Ge, S.S., Hong, F., Lee, T.H.: Adaptive neural network control of nonlinear systems with unknown time delays. IEEE Trans. Automat. Contr. 48, 2004–2010 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hong, F., Ge, S.S., Lee, T.H.: Practical adaptive neural control of nonlinear systems with unknown time delays. IEEE Trans. Syst., Man, Cybern. B, Cybern. 35, 849–854 (2005)

    Article  Google Scholar 

  11. Ge, S.S., Hong, F., Lee, T.H.: Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans. Syst., Man, Cybern. B, Cybern. 34, 499–516 (2004)

    Article  Google Scholar 

  12. Wang, M., Chen, B., Shi, P.: Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems. IEEE Trans. Syst., Man, Cybern. B, Cybern. 38, 721–730 (2008)

    Article  Google Scholar 

  13. Zhang, T.P., Ge, S.S.: Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica 43, 1021–1033 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kosmatopoulos, E.B., Polycarpou, M.M., Christodoulou, M.A., Ioannou, P.A.: High-order neural network structures for identification of dynamical systems. IEEE Trans. Neural Netw. 6, 422–431 (1995)

    Article  Google Scholar 

  15. Ge, S.S., Tee, K.P.: Approximation-based control of nonlinear MIMO time-delay systems. Automatica 43, 31–43 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. The World’s Largest Antenna Measuring Range: Astrium and EurasSpace Deliver Compact Range to China, http://classic.eads.net/1024/en/pressdb/archiv/2003/2003/en_20030321_euras_e.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Na, J., Herrmann, G., Ren, X. (2010). Neural Network Control of Nonlinear Time-Delay System with Unknown Dead-Zone and Its Application to a Robotic Servo System. In: Vadakkepat, P., et al. Trends in Intelligent Robotics. FIRA 2010. Communications in Computer and Information Science, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15810-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15810-0_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15809-4

  • Online ISBN: 978-3-642-15810-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics