Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximation-Based Adaptive Neural Tracking Control of an Uncertain Robot with Output Constraint and Unknown Time-Varying Delays

  • Conference paper
  • First Online:
Advances in Neural Networks - ISNN 2017 (ISNN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10262))

Included in the following conference series:

Abstract

This paper presents an adaptive neural control design for an n-link rigid robot with both output constraint and unknown time-varying delays. The main design difficulties caused by both the output constraint and unknown time-varying delayed states. In order to overcome these difficulties, the novel Barrier Lyapunov Functions (BLF) and iterative backstepping procedures are employing to guarantee constraints satisfaction of the position of the robot. The Lyapunov-krasovskii functionals (LKFs) are utilized to eliminate and compensate the effect of unknown functions with time-varying delayed states in communication channels. By using the Lyapunov analysis, the stability of closed-loop systems is proven.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, C.L.P., Wen, G.X., Liu, Y.J., Liu, Z.: Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Trans. Cybern. 46, 1591–1601 (2016)

    Article  Google Scholar 

  2. Lai, G.Y., Liu, Z., Zhang, Y., Chen, C.L.P.: Adaptive fuzzy tracking control of nonlinear systems with asymmetric actuator backlash based on a new smooth inverse. IEEE Trans. Cybern. 46, 1250–1262 (2016)

    Article  Google Scholar 

  3. Wen, G.X., Chen, C.L.P., Liu, Y.J., Liu, Z.: Neural-network-based adaptive leader-following consensus control for second-order nonlinear multi-agent systems. IET Control Theory Appl. 9, 1927–1934 (2015)

    Article  MathSciNet  Google Scholar 

  4. Liu, Z., Chen, C., Zhang, Y., Chen, C.L.P.: Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism. IEEE Trans. Cybern. 45, 507–518 (2015)

    Article  Google Scholar 

  5. Chen, M., Chen, W.H., Wu, Q.X.: Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer. Sci. China Inf. Sci. 57, 1–13 (2014)

    MATH  Google Scholar 

  6. Yang, Q.M., Jagannathan, S., Sun, Y.X.: Robust integral of neural network and error sign control of MIMO nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 26, 3278–3286 (2015)

    Article  MathSciNet  Google Scholar 

  7. Kwan, C., Lewis, F.L., Dawson, D.M.: Robust neural-network control of rigid-link electrically driven robots. IEEE Trans. Neural Netw. 9, 581–588 (1998)

    Article  Google Scholar 

  8. Kwan, C., Lewis, F.L., Kim, Y.H.: Robust neural network control of flexible-joint robots. Asian J. Control 1, 188–197 (1999)

    Article  Google Scholar 

  9. Kwan, C., Lewis, F.L.: Robust backstepping control of nonlinear systems using neural networks. IEEE Trans. Syst. Man Cybern. Part A: Syst. 30, 753–766 (2000)

    Article  Google Scholar 

  10. He, W., Zhang, S., Ge, S.S.: Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans. Ind. Electron. 64, 4126–4133 (2014)

    Article  Google Scholar 

  11. Li, D.J., Li, D.P.: Adaptive controller design-based neural networks for output constraint continuous stirred tank reactor. Neurocomputing 153, 159–163 (2015)

    Article  Google Scholar 

  12. He, W., Nie, S.X., Meng, T.T., Liu, Y.J.: Modeling and vibration control for a moving beam with application in a drilling riser. IEEE Trans. Control Syst. Technol., to be published. doi:10.1109/TCST.2016.2577001

  13. He, W., Ge, W.L., Li, Y.C., Liu, Y.J., Yang, C.G., Sun, C.Y.: Model identification and control design for a humanoid robot. IEEE Trans. Syst. Man Cybern.: Syst. 47, 45–57 (2017)

    Article  Google Scholar 

  14. Liu, Z., Lai, G.Y., Zhang, Y., Chen, C.L.P.: Adaptive neural output feedback control of output-constrained nonlinear systems with unknown output nonlinearity. IEEE Trans. Neural Netw. Learn. Syst. 26, 1789–1802 (2015)

    Article  MathSciNet  Google Scholar 

  15. Tee, K.P., Ge, S.S.: Control of nonlinear systems with partial state constraints using a barrier Lyapunov function. Int. J. Control 84, 2008–2023 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Y.J., Tong, S.C.: Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica 76, 143–152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y.J., Tong, S.C., Chen, C.L.P., Li, D.J.: Adaptive NN control using Integral Barrier Lyapunov Functionals for uncertain nonlinear block-triangular constraint systems. IEEE Trans. Cybern., to be published. doi:10.1109/TCYB.2016.2581173

  18. Choi, J.S., Baek, Y.S.: A single dof magnetic levitation system using time delay control and reduced-order observer. J. Mech. Sci. Technol. 16, 1643–1651 (2002)

    Google Scholar 

  19. Mehrkanoon, S., Shardt, Y.A.W., Suykens, J.A.K.: Estimating the unknown time delay in chemical processes. Eng. Appl. Artif. Intell. 55, 219–230 (2016)

    Article  Google Scholar 

  20. Delgado, E., Diaz-Cacho, M., Bustelo, D., Barreiro, A.: Generic approach to stability under time-varying delay in teleoperation: application to the position-error control of a gantry crane. IEEE/ASME Trans. Mechatron. 18, 1581–1591 (2013)

    Article  Google Scholar 

  21. Wang, M., Chen, B., Liu, X.Y., Shi, P.: Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems. Fuzzy Sets Syst. 159, 949–967 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, B., Liu, X.P., Liu, K.F., Lin, C.: Novel adaptive neural control design for nonlinear MIMO time-delay systems. Automatica 45, 1554–1560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, D.P., Li, D.J.: Adaptive neural tracking control for nonlinear time-delay systems with full state constraints. IEEE Trans. Syst. Man Cybern.: Syst., to be published. doi:10.1109/TSMC.2016.2637063

  24. Chang, Y.C., Wu, M.F.: Robust tracking control for a class of flexible-joint time-delay robots using only position measurements. Int. J. Syst. Sci. 47, 3336–3349 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (61473139, 61622303 and 61603164), the Doctoral Scientific Research Staring Fund of Binzhou University under Grant 2016Y14 and the project for Distinguished Professor of Liaoning Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Peng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, DP., Liu, YJ., Li, DJ., Tong, S., Meng, D., Wen, GX. (2017). Approximation-Based Adaptive Neural Tracking Control of an Uncertain Robot with Output Constraint and Unknown Time-Varying Delays. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10262. Springer, Cham. https://doi.org/10.1007/978-3-319-59081-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59081-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59080-6

  • Online ISBN: 978-3-319-59081-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics