Abstract
Dependence Graph provides the basis for powerful programming tools to address a large number of software engineering activities including security analysis. This paper proposes a semantics-based static dependence analysis framework for relational database applications based on the Abstract Interpretation theory. As database attributes differ from traditional imperative language variables, we define abstract semantics of database applications in relational abstract domain. This allows to identify statically various parts of database information (in abstract form) possibly used or defined by database statements, leading to a more precise dependence analysis. This way the semantics-based dependence computation improves w.r.t. its syntax-based counterpart. We prove the soundness of our proposed approach which guarantees that non-overlapping of the defined-part by one statement and the used-part by another statement in abstract domain always indicates a non-dependency in practice. Furthermore, the abstract semantics as a basis of the proposed framework makes it more powerful to solve undecidable scenario when initial database state is completely unknown.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahuja, B.K., Jana, A., Swarnkar, A., Halder, R.: On preventing SQL injection attacks. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds.) Advanced Computing and Systems for Security. AISC, vol. 395, pp. 49–64. Springer, Heidelberg (2016). doi:10.1007/978-81-322-2650-5_4
Bagnara, R., Hill, P.M., Zaffanella, E.: The ppl: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Technical report Dipartimento di Matematica, Università di Parma, Italy (2006)
Baralis, E., Widom, J.: An algebraic approach to rule analysis in expert database systems (1994)
Chen, L., Minè, A., Cousot, P.: A sound floating-point polyhedra abstract domain. In: Proceeding of the PLS, pp. 3–18 (2008)
Cheney, J., Ahmed, A., Acar, U.A.: Provenance as dependency analysis. In: Proceeding of the ICDPL, pp. 138–152 (2007)
Chernikova, N.V.: Algorithm for discovering the set of all the solutions of a linear programming problem, vol. 8, pp. 282–293 (1968)
Cousot, P.: Web page on abstract interpretation. http://www.di.ens.fr/cousot/AI/
Cousot, P., Cousot, R.: A gentle introduction to formal verification of computer systems by abstract interpretation. NATO Science Series III: Comp. and Syst. Sciences
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proceeding of the POPL 1978, pp. 84–96 (1978)
Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in optimization. ACM Trans. Program. Lang. Sys. 9(3), 319–349 (1978)
Guerraoui, R., Henzinger, T.A., Singh, V.: Software transactional memory on relaxed memory models. In: Computer Aided Verification, vol. 5643, pp. 321–336 (2009)
Halder, R., Cortesi, A.: Abstract interpretation of database query languages. Comput. Lang. Syst. Struct. 38, 123–157 (2012)
Halder, R., Cortesi, A.: Abstract program slicing of database query languages. In: Proceeding of the Applied Computing, pp. 838–845. ACM (2013)
Halder, R., Jana, A., Cortesi, A.: Data leakage analysis of the hibernate query language on a propositional formulae domain. Trans. Large-Scale Data- Knowl.-Centered Syst. 23, 23–44 (2016)
Hammer, C.: Experiences with PDG-based IFC. In: Massacci, F., Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 44–60. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11747-3_4
Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. ACM Trans. PLS 12(1), 26–60 (1990)
Jana, A., Halder, R., Chaki, N., Cortesi, A.: Policy-based slicing of hibernate query language. In: Saeed, K., Homenda, W. (eds.) CISIM 2015. LNCS, vol. 9339, pp. 267–281. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24369-6_22
Jana, A., Halder, R., Cortesi, A.: Verification of hibernate query language by abstract interpretation. In: He, X., Gao, X., Zhang, Y., Zhou, Z.-H., Liu, Z.-Y., Fu, B., Hu, F., Zhang, Z. (eds.) IScIDE 2015. LNCS, vol. 9243, pp. 116–128. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23862-3_12
Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_52
Johnson, A., Waye, L., Moore, S., Chong, S.: Exploring and enforcing security guarantees via program dependence graphs. In: Proceeding of the 36th ACM SIGPLAN Conference on PLDI, PLDI 2015, pp. 291–302. ACM (2015)
Kelner, J.A., Spielman, D.A.: A randomized polynomial-time simplex algorithm for linear programming. In: Proceeding of the Theory of Computing, pp. 51–60. ACM (2006)
Larsen, L., Harrold, M.J.: Slicing object-oriented software. In: Proceeding of the ICSE, pp. 495–505. IEEE CS (1996)
Levy, A.Y., Sagiv, Y.: Queries independent of updates. In: Proceeding of the VLDB, pp. 171–181 (1993)
Mastroeni, I., Zanardini, D.: Data dependencies and program slicing: from syntax to abstract semantics. In: Proceeding of the Partial Evaluation and Semantics-Based Program Manipulation, pp. 125–134 (2008)
Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31(1), 114–127 (1984)
Millstein, T., Levy, A., Friedman, M.: Query containment for data integration systems. In: Proceeding of the PDS, pp. 67–75. ACM (2000)
Minè, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19(1), 31–100 (2006). http://www.astreeensfr/
Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)
Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software development environment. ACM SIGPLAN Notices 19(5), 177–184 (1984)
Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. SAC 21, 2003 (2003)
Sen, S., Dutta, A., Cortesi, A., Chaki, N.: A new scale for attribute dependency in large database systems. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012. LNCS, vol. 7564, pp. 266–277. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33260-9_23
Tsahhirov, I., Laud, P.: Application of dependency graphs to security protocol analysis. In: Proceeding of the 3rd Symposium on Trustworthy Global Computing, pp. 294–311, Sophia-Antipolis, France, 5–6 Nov 2007
Willmor, D., Embury, S.M., Shao, J.: Program slicing in the presence of a database state. In: Proceeding of the IEEE ICSM, pp. 448–452 (2004)
Acknowledgment
This work is partially supported by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project “POCI-01-0145-FEDER-006961”, and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia as part of project “UID/EEA/50014/2013”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Jana, A., Halder, R. (2016). Defining Abstract Semantics for Static Dependence Analysis of Relational Database Applications. In: Ray, I., Gaur, M., Conti, M., Sanghi, D., Kamakoti, V. (eds) Information Systems Security. ICISS 2016. Lecture Notes in Computer Science(), vol 10063. Springer, Cham. https://doi.org/10.1007/978-3-319-49806-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-49806-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49805-8
Online ISBN: 978-3-319-49806-5
eBook Packages: Computer ScienceComputer Science (R0)