Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11547))

Included in the following conference series:

  • 1195 Accesses

Abstract

Recently, a new rank metric code, namely LRPC-Kronecker Product codes was proposed in APKC 2018 Workshop, and adapted into a construction of a new cryptosystem, namely the LRPC-Kronecker cryptosystem. The LRPC-Kronecker cryptosystem has compact key size, with their parameters achieve 256-bit security with key size (9,768 bits) smaller than the RSA’s key size (15,360 bits). It was also shown that the LRPC-Kronecker cryptosystem is CCA2-secured via the Kobara-Imai conversion. In this paper, we point out some errors in the original LRPC-Kronecker cryptosystem and suggest a reparation for the errors. We show that the LRPC-Kronecker cryptosystem in fact is equivalent to the LRPC cryptosystem. With this equivalence shown, we suggest alternative encryption and decryption, namely AKron for the LRPC-Kronecker cryptosystem. Furthermore, we show that there exists design weakness in the LRPC-Kronecker cryptosystem. We exploit this weakness and successfully cryptanalyze all the suggested parameters for \(k_1 = n_1\). We are able to recover secret key for all the proposed parameters within the claimed security level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We have pointed out the errors mentioned in this section to the authors of [10]. They have recognized these errors and our suggestions to fix the errors as in Table 3.

References

  1. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.-P.: A new algorithm for solving the rank syndrome decoding problem. In: Proceedings of IEEE International Symposium on Information Theory (ISIT 2018), pp. 2421–2425 (2018)

    Google Scholar 

  2. Augot, D., Loidreau, P., Robert, G.: Generalized Gabidulin codes over fields of any characteristic. Des. Codes Crypt. 86(8), 1807–1848 (2018)

    Article  MathSciNet  Google Scholar 

  3. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_16

    Chapter  Google Scholar 

  4. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Peredachi Informatsii 21(1), 3–16 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)

    Article  MathSciNet  Google Scholar 

  6. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: New results for rank-based cryptography. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 1–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_1

    Chapter  Google Scholar 

  7. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016)

    Article  MathSciNet  Google Scholar 

  8. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_4

    Chapter  Google Scholar 

  9. Horlemann-Trautmann, A., Marshall, K., Rosenthal, J.: Extension of overbeck’s attack for Gabidulin based cryptosystems. Des. Codes Crypt. 86(2), 319–340 (2018)

    Article  MathSciNet  Google Scholar 

  10. Kim, J.-L., Galvez, L., Kim, Y.-S., Lee, N.: A new LRPC-Kronecker product codes based public-key cryptography. In: Proceedings of the 5th ACM on ASIA Public-Key Cryptography Workshop (APKC 2018), pp. 25–33 (2018)

    Google Scholar 

  11. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_2

    Chapter  MATH  Google Scholar 

  12. Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. In: Proceedings of Yet Another Conference on Cryptography (YACC 2006), pp. 142–152 (2006)

    Google Scholar 

  13. Lau, T.S.C., Tan, C.H.: A new technique in rank metric code-based encryption. Cryptography 2, 32 (2018)

    Article  Google Scholar 

  14. Lau, T.S.C., Tan, C.H.: A new Gabidulin-like code and its application in cryptography. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2019. LNCS, vol. 11445, pp. 269–287. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16458-4_16

    Chapter  Google Scholar 

  15. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The Deep Space Network Progress Report 42-44, pp. 114–116. Jet Propulsion Laboratory, Pasedena, CA (1978)

    Google Scholar 

  16. Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank metric and its cryptography applications. Probl. Inf. Transm. 38(3), 237–246 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Galvez et al. (the authors of [10]) for their feedback on our identification of the errors in the original proposal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Shue Chien Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lau, T.S.C., Tan, C.H. (2019). Cryptanalysis on CCA2-Secured LRPC-Kronecker Cryptosystem. In: Jang-Jaccard, J., Guo, F. (eds) Information Security and Privacy. ACISP 2019. Lecture Notes in Computer Science(), vol 11547. Springer, Cham. https://doi.org/10.1007/978-3-030-21548-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21548-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21547-7

  • Online ISBN: 978-3-030-21548-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics