Nothing Special   »   [go: up one dir, main page]

Skip to main content

New Results for Rank-Based Cryptography

  • Conference paper
Progress in Cryptology – AFRICACRYPT 2014 (AFRICACRYPT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8469))

Included in the following conference series:

Abstract

In this paper we survey new results for rank-based cryptography: cryptosystems which are based on error-correcting codes embedded with the rank metric. These new results results first concern the LRPC cryptosystem, a cryptosystem based on a new class of decodable rank codes: the LRPC codes (for Low Rank Parity Check codes) which can be seen as an analog of the classical LDPC codes but for rank metric. The LRPC cryptosystem can benefit from very small public keys of less than 2,000 bits and is moreover very fast. We also present new optimized attacks for solving the general case of the rank syndrome decoding problem, together with a zero-knowledge authentication scheme and a new signature scheme based on a mixed errors-erasures decoding of LRPC codes, both these systems having public keys of a few thousand bits. These new recent results highlight that rank-based cryptography has many good features that can be used for practical cryptosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilar, C., Gaborit, P., Schrek, J.: A new zero-knowledge code based identification scheme with reduced communication. In: 2011 IEEE Information Theory Workshop (ITW), pp. 648–652 (2011)

    Google Scholar 

  2. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic, eprint iacr 2013/400

    Google Scholar 

  3. Becker, A., Joux, A., May, A., Meurer, A.: Decoding Random Binary Linear Codes in 2 n/20: How 1 + 1 = 0 Improves Information Set Decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of the McEliece Cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Berger, T., Loidreau, P.: Designing an Efficient and Secure Public-Key Cryptosystem Based on Reducible Rank Codes. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 218–229. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Chabaud, F., Stern, J.: The Cryptographic Security of the Syndrome in Decoding Problem for Rank Distance Codes. In: Kim, K.-C., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Chen, K.: A New Identification Algorithm. In: Dawson, E., Golić, J. (eds.) Cryptography: Policy and Algorithms 1995. LNCS, vol. 1029, pp. 244–249. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  8. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a Mc-Eliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Faugère, J.-C., El Din, M.S., Spaenlehauer, P.-J.: Computing loci of rank defects of linear matrices using Grbner bases and applications to cryptology. In: ISSAC 2010, pp. 257–264 (2010)

    Google Scholar 

  11. Faure, C., Loidreau, P.: A New Public-Key Cryptosystem Based on the Problem of Reconstructing p-Polynomials. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 304–315. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Gabidulin, E.M.: Theory of Codes with Maximum Rank Distance. Probl. Peredachi Inf. (21), 3–16 (1985)

    Google Scholar 

  13. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a Non-Commutative Ring and their Applications in Cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  14. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low Rank Parity Check Codes and their application in cryptography. In: The Preproceedings of Workshop on Coding and Cryptography (WCC) 2013, Borgen, Norway, pp. 167–179 (2013)

    Google Scholar 

  15. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: RankSign: An efficient signature algorithm based on the rank metric. eprint iacr (submitted)

    Google Scholar 

  16. Gaborit, P., Schrek, J., Zémor, G.: Full Cryptanalysis of the Chen Identification Protocol. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 35–50. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. eprint. Submitted to IEEE Trans. Information Theory

    Google Scholar 

  18. von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University Press (2003)

    Google Scholar 

  19. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. In: Proceedings of YACC 2006 (2006)

    Google Scholar 

  21. Loidreau, P.: Designing a Rank Metric Based McEliece Cryptosystem. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 142–152. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Loidreau, P.: Properties of codes in rank metric, http://arxiv.org/abs/cs/0610057

  23. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: New McEliece Variants from Moderate Density Parity-Check Codes. Cryptology ePrint Archive: Report 2012/409

    Google Scholar 

  24. Ore, O.: On a special class of polynomials. Trans. American Math. Soc. (1933)

    Google Scholar 

  25. Ourivski, A.V., Johansson, T.: New Technique for Decoding Codes in the Rank Metric and Its Cryptography Applications. Probl. Inf. Transm. (38), 237–246 (2002)

    Google Scholar 

  26. Overbeck, R.: Structural Attacks for Public Key Cryptosystems based on Gabidulin Codes. J. Cryptology 21(2), 280–301 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stern, J.: A new paradigm for public key identification. IEEE Transactions on Information Theory 42(6), 2757–2768 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gaborit, P., Ruatta, O., Schrek, J., Zémor, G. (2014). New Results for Rank-Based Cryptography. In: Pointcheval, D., Vergnaud, D. (eds) Progress in Cryptology – AFRICACRYPT 2014. AFRICACRYPT 2014. Lecture Notes in Computer Science, vol 8469. Springer, Cham. https://doi.org/10.1007/978-3-319-06734-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06734-6_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06733-9

  • Online ISBN: 978-3-319-06734-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics