Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Nodal solutions for quasilinear equations of Kirchhoff type in \({\mathbb {R}}^3\)

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a kind of quasilinear equation of Kirchhoff type in \({\mathbb {R}}^3\)

$$\begin{aligned} \left\{ \begin{aligned}&a(u)\Delta u+\frac{1}{2}a'(u)|\nabla u|^2-V(x)u+\int _{{\mathbb {R}}^3}b(u)|\nabla u|^2\text{ d }x(b(u)\Delta u\\&+\frac{1}{2}b'(u)|\nabla u|^2)+f(u)=0,\, \text{ in }\, \, {\mathbb {R}}^3,\\&u(x)\rightarrow 0, \quad \text{ as } \,\,\ \ |x|\rightarrow \infty , \end{aligned} \right. \ \ (P) \end{aligned}$$

where the potential function V is a radial function, the coefficients a and b are of quadratic growth, and the nonlinear term f may be either of subcritical growth or of critical growth. By using the Nehari method we prove that for any given positive integer k the problem has two radial solutions, each with k nodal domains exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cao DM, Peng SJ, Yan SS (2012) Infinitely many solutions for \(p\)-Laplacian equation involving critical Sobolev growth. J Funct Anal 262:2861–2902

    Article  MathSciNet  MATH  Google Scholar 

  • Colin M, Jeanjean L (2004) Solutions for a quasilinear Schrödinger equations: a dual approach. Nonlinear Anal 56:213–226

    Article  MathSciNet  MATH  Google Scholar 

  • D’Ancona P, Spagnolo S (1992) Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math 108:247–262

  • Deng YB, Peng S, Shuai W (2015) Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \({\mathbb{R} }^3\). J Funct Anal 269:3500–3527

    Article  MathSciNet  MATH  Google Scholar 

  • Devillanova G, Solimini S (2002) Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv Differ Equ 7:1257–1280

    MathSciNet  MATH  Google Scholar 

  • Figueiredo GM (2013) Existence of a positive solution for a Kirchhofff type problem with critical growth via truncation argument. J Math Anal Appl 402:706–713

    Article  MATH  Google Scholar 

  • Guo YX, Liu JQ, Wang ZQ (2016) On a Brezis–Nirenberg-type quasilinear problem. J Fixed Point Theory Appl, 1257–1280

  • He XM, Zou WM (2012) Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R} }^3\). J Differ Equ 12:1813–1834

    Article  MATH  Google Scholar 

  • Kirchhoff G (1883) Mechnik, Teubner, Leipizig

  • Lions JL (1978) On some questions in boundary value problems of mathematical physics, in Contemporary Developments in Continuam Mechanics and Partial Differential Equations. North-Holland, Math. Stud. Amsterdam, New York, pp 284–346

    MATH  Google Scholar 

  • Liu X, Zhao J (2017) \(p\)-Laplacian equations in \({\mathbb{R} }^N\) with finite potential via truncation method. Adv Nonlinear Stud 17:595–610

    Article  MathSciNet  MATH  Google Scholar 

  • Liu JQ, Wang YQ, Wang Z-Q (2003) Soliton solutions for quasilinear Schrödinger equations II. J Differ Equ 187:473–493

    Article  MATH  Google Scholar 

  • Tintarev K, Fieseler K-H (2007) Concentration and compactness: functional-analytic grands and applications. Imperial College Press

  • Zhang ZT, Perera K (2006) Sign-changing solutions of Kirchhoff type equations via invariant set of descent flow. J Math Anal Appl 317:456–463

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first and second authors were supported by the NSFC 11601493; the third author was supported by NSFC 12471505, the fourth author was supported by 12161093 and Yunnan Key Laboratory of Modern Analytical Mathematical and Applications.

Appendix: Proof of Proposition 4.1, the concentration-compactness analysis

Appendix: Proof of Proposition 4.1, the concentration-compactness analysis

The Proof of Proposition 4.1 consists of a sequence of lemmas.

Assume \(\lambda _n\rightarrow 0,\) \(u_n\in X,\) satisfies the equation

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}\left( a(u_n)\nabla u_n\nabla \varphi +\frac{1}{2}a'(u_n)|\nabla u_n|^2\varphi \right) \text{ d }x+\int _{{\mathbb {R}}^3}V(x) u_n\varphi \text{ d }x\\&\quad +\int _{{\mathbb {R}}^3}b(u_n)|\nabla u_n|^2\text{ d }x\int _{{\mathbb {R}}^3} \left( b(u_n)\nabla u_n\nabla \varphi +\frac{1}{2}b'(u_n)|\nabla u_n|^2\varphi \right) \text{ d }x=\int _{{\mathbb {R}}^3}f_{\lambda _n}(u_n)\varphi \text{ d }x,\ \\&\quad \text{ for } \varphi \in C_0^{\infty }({\mathbb {R}}^3), \end{aligned}\nonumber \\ \end{aligned}$$
(a1)

and there exists a constant L,  independent of n,  such that

$$\begin{aligned} \int _{{\mathbb {R}}^3}(1+u_n^2)|\nabla u_n|^2\text{ d }x+\int _{{\mathbb {R}}^3}V(x)u_n^2\text{ d }x\le L. \end{aligned}$$
(a2)

Lemma A1

Assume \(u_n\rightharpoonup u\) in \(H_{V},\) \(u_n\nabla u_n\rightharpoonup u\nabla u\) in \(L^2({\mathbb {R}}^3)\) and \(K_n=\int _{{\mathbb {R}}^3}b(u_n)|\nabla u_n|^2\text{ d }x\rightarrow K_{\infty }.\) u satisfies the equation

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}\left( a(u)\nabla u\nabla \varphi +\frac{1}{2}a'(u)|\nabla u|^2\varphi \right) \text{ d }x+\int _{{\mathbb {R}}^3}V(x) u\varphi \text{ d }x\\&\quad +K_{\infty }\left( \int _{{\mathbb {R}}^3}(b(u)\nabla u\nabla \varphi +\frac{1}{2}b'(u)|\nabla u|^2\varphi )\text{ d }x\right) =\int _{{\mathbb {R}}^3}(u^{11}+\mu |u|^{q-2}u)\varphi \text{ d }x,\ \\&\quad \text{ for } \varphi \in C_0^{\infty }({\mathbb {R}}^3). \end{aligned} \nonumber \\ \end{aligned}$$
(a3)

Proof

Notice that \(u_n(x){\mathop {\rightarrow }\limits ^{a.e.}} u(x),\) and

$$\begin{aligned} & f_{\lambda _n}(u_n(x))=|u_n(x)|^{q-2}u_n(x)|m_{\lambda _n}(u_n(x))|^{12-q}\\ & \quad +\mu |u_n(x)|^{q-2}u_n(x) {\mathop {\rightarrow }\limits ^{a.e.}}u^{11}(x)+\mu |u(x)|^{q-2}u(x). \end{aligned}$$

Lemma \(A_1\) can be proved as Lemma 2.2 of Guo et al. (2016). \(\square \)

Lemma A2

Let \(T>0,\) let \(u^T\) be the truncated function: \(u^T(x)=u(x)\) if \(u(x)\le T,\) \(u^T(x)=\pm T\) if \(\pm u(x)\ge T.\) Then \(u_n^T\rightarrow u^T\) in \(H_V.\)

Proof

Multiply by \(u_n^T\) and \(u^T\) the equations \((a_1),(a_3)\) respectively, we obtain

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}a(u_n^T)|\nabla u_n^T|^2\text{ d }x+\frac{1}{2}\int _{{\mathbb {R}}^3}a'(u_n)|\nabla u_n|^2u_n^T\text{ d }x+\int _{{\mathbb {R}}^3}V(x)u_nu_n^T\text{ d }x\\&\quad +K_n\left( \int _{{\mathbb {R}}^3}b(u_n^T)|\nabla u_n^T|^2\text{ d }x+\frac{1}{2}\int _{{\mathbb {R}}^3}b'(u_n)|\nabla u_n|^2u_n^T\text{ d }x\right) =\int _{{\mathbb {R}}^3}f_{\lambda _n}(u_n)u_n^T\text{ d }x.\\ \end{aligned}\nonumber \\ \end{aligned}$$
(a4)
$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}a(u^T)|\nabla u^T|^2\text{ d }x+\frac{1}{2}\int _{{\mathbb {R}}^3}a'(u)|\nabla u|^2u^T\text{ d }x+\int _{{\mathbb {R}}^3}V(x)uu^T\text{ d }x\\&\qquad +K_{\infty }\left( \int _{{\mathbb {R}}^3}b(u^T)|\nabla u^T|^2\text{ d }x+\frac{1}{2}\int _{{\mathbb {R}}^3}b'(u)|\nabla u|^2u^T\text{ d }x\right) \\&\quad =\int _{{\mathbb {R}}^3}(u^{11}+\mu |u|^{q-2}u)u^T\text{ d }x. \end{aligned}\nonumber \\ \end{aligned}$$
(a5)

Since \(u_n\in X\) is radial function, X is compactly imbedding to \(L^q({\mathbb {R}}^3),2<q<12,\) that is a subsequence of \(u_n\) strongly converge to u in \(L^q({\mathbb {R}}^3)\), provided \(u_n\rightharpoonup u\) in \(H_V,\) \(u_n\nabla u_n\rightharpoonup u\nabla u\) in \(L^2({\mathbb {R}}^3).\) We have

$$\begin{aligned} \begin{aligned} \int _{{\mathbb {R}}^3}f_{\lambda _n}(u_n)u_n^T\text{ d }x\rightarrow \int _{{\mathbb {R}}^3}(u^{11}+\mu |u|^{q-2}u)u^T\text{ d }x, \ \ \text{ as } \ \ n\rightarrow \infty . \end{aligned} \end{aligned}$$
(a6)

By lower semi-continuity, the limits of terms on the left hand side of \((a_4)\) are larger than or equal to the corresponding terms on the left side of \((a_5)\), hence taking \((a_6)\) into account, we obtain

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}a(u_n^T)|\nabla u_n^T|^{2}\text{ d }x\rightarrow \int _{{\mathbb {R}}^3}a(u^T)|\nabla u^T|^2\text{ d }x,\\&\int _{{\mathbb {R}}^3}V(x)u_nu_n^T\text{ d }x\rightarrow \int _{{\mathbb {R}}^3}V(x)uu^T\text{ d }x, \end{aligned}\nonumber \\ \end{aligned}$$
(a7)

and \(u_n^T\rightarrow u^T\) in \(H_V.\) \(\square \)

Corollary A3

Assume the profile decomposition (4.11) holds. Then \(v=k(u)\) satisfies the equation

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}A(g(v))\nabla v\nabla \varphi \text{ d }x +\frac{1}{2}\int _{{\mathbb {R}}^3}A'(g(v))g'(v)|\nabla v|^2\varphi \text{ d }x +\int _{{\mathbb {R}}^3}V(x)g(v)g'(v)\text{ d }x\\&\quad +K_{\infty }\left( \int _{{\mathbb {R}}^3}B(g(v))\nabla v\nabla \varphi \text{ d }x +\frac{1}{2}\int _{{\mathbb {R}}^3}B'(g(v))g'(v)|\nabla v|^2\varphi \text{ d }x\right) \\&\quad =\int _{{\mathbb {R}}^3}f_{\lambda }(g(v))g'(v)\varphi \text{ d }x, \ \\&\quad \text{ for } \ \varphi \in C_0^{\infty }({\mathbb {R}}^3) \end{aligned}\nonumber \\ \end{aligned}$$
(a8)

and \(v_n^T=(k(u_n))^T\rightarrow v^T\) in \(H_V\).

Lemma A4

It holds that

$$\begin{aligned} \begin{aligned} \int _{{\mathbb {R}}^3}A(g(v_n))\nabla v_n\nabla \varphi \text{ d }x&=\int _{{\mathbb {R}}^3}A_{\infty }\nabla v_n\nabla \varphi \text{ d }x\\&\quad +\int _{{\mathbb {R}}^3}(A(g(v))-A_{\infty })\nabla v\nabla \varphi \text{ d }x +o(1)\Vert \varphi \Vert _{{\mathfrak {D}}}, \end{aligned} \end{aligned}$$
(a9)

where \(A_{\infty }=\lim _{|t|\rightarrow \infty }A(t).\)

Proof

Using the fact \(v_n^T\rightarrow v^T\) in \({\mathfrak {D}},\) we can prove Lemma \(A_4\). For the details, see the proof of Lemma 2.2 (Guo et al. 2016). \(\square \)

Lemma A5

Assume \(\sigma _{n,k}^{-\frac{1}{2}}v_n(\sigma _{n,k}^{-1}\cdot )\rightharpoonup U_k\) in \({\mathfrak {D}},\) \(w=|U_k|.\) Then w satisfies the inequality

$$\begin{aligned} \begin{aligned}&\alpha \int _{{\mathbb {R}}^3}\nabla w\nabla \varphi \text{ d }x \le 2^{5}\int _{{\mathbb {R}}^3} w^5\varphi \text{ d }x,\ \ \ \ \text{ for } \ \ \ \varphi \in {\mathfrak {D}},\varphi \ge 0, \end{aligned} \end{aligned}$$
(a10)

where \(\alpha =A_{\infty }+K_{\infty }B_{\infty },\) \(B_{\infty }=\lim _{|t|\rightarrow \infty }B(t).\)

Proof

\(v_n\) satisfies the equation

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}A(g(v_n))\nabla v_n\nabla \varphi \text{ d }x +\frac{1}{2}\int _{{\mathbb {R}}^3}A'(g(v_n))g'(v_n)|\nabla v_n|^2\varphi \text{ d }x +\int _{{\mathbb {R}}^3}V(x_n)g(v_n)g'(v_n)\varphi \text{ d }x\\&K_{n}\left( \int _{{\mathbb {R}}^3}B(g(v_n))\nabla v_n\nabla \varphi \text{ d }x +\frac{1}{2}\int _{{\mathbb {R}}^3}B'(g(v_n))g'(v_n)|\nabla v_n|^2\varphi \text{ d }x\right) \\&\quad =\int _{{\mathbb {R}}^3}f_{\lambda }(g(v_n))g'(v_n)\varphi \text{ d }x. \end{aligned} \nonumber \\ \end{aligned}$$
(a11)

Denote \(w_n=|v_n|,\) \(w_n\rightharpoonup |v|=w,\) \(\sigma _n^{-\frac{1}{2}}w_n(\sigma _n^{-1}\cdot )\rightharpoonup w\) in \({\mathfrak {D}}.\) For \(\varepsilon >0,\varphi \in C_0^{\infty }({\mathbb {R}}^3),\varphi \ge 0,\) we have

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}A(g(v_n))\nabla v_n\nabla (\frac{v_n}{\sqrt{\varepsilon ^2+v_n^2}}\varphi )\text{ d }x +\frac{1}{2}\int _{{\mathbb {R}}^3}A'(g(v_n))g'(v_n)\left| v_{n} \right| ^{2} \frac{v_n}{\sqrt{\varepsilon ^2+v_n^2}}\varphi \text{ d }x\\&\quad =\int _{{\mathbb {R}}^3}A(g(v_n))\nabla v_n\frac{v_n}{\sqrt{\varepsilon ^2+v_n^2}}\nabla \varphi \text{ d }x +\int _{{\mathbb {R}}^3}A(g(v_n))\frac{\varepsilon ^2|\nabla v_n|^2}{(\varepsilon ^2+v_n^2)^{3/2}}\varphi \text{ d }x\\&\qquad +\frac{1}{2}\int _{{\mathbb {R}}^3}A'(g(v_n))g'(v_n)\left| v_{n} \right| ^{2}\frac{v_n}{\sqrt{\varepsilon ^2+v_n^2}}\varphi \text{ d }x\\&\quad \ge \int _{{\mathbb {R}}^3}A(g(v_n))\nabla v_n\frac{v_n}{\sqrt{\varepsilon ^2+v_n^2}}\nabla \varphi \text{ d }x\rightarrow \int _{{\mathbb {R}}^3}A(g(v_n))\nabla w_n\nabla \varphi \text{ d }x, \text{ as } \varepsilon \rightarrow 0. \end{aligned} \nonumber \\ \end{aligned}$$
(a12)

In a similar way we treat the other terms in (a11) and obtain

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}A(g(v_n))\nabla w_n\nabla \varphi \text{ d }x +K_{n}\int _{{\mathbb {R}}^3}B(g(v_n))\nabla w_n\nabla \varphi \text{ d }x\\&\quad \le \int _{{\mathbb {R}}^3}|f_{\lambda _n}(g(v_n))|g'(v_n)\varphi \text{ d }x,\ \ \text{ for } \ \ \varphi \in C_0^{\infty }({\mathbb {R}}^3),\varphi \ge 0. \end{aligned} \nonumber \\ \end{aligned}$$
(a13)

By Lemma \(A_4\) (which is valid for \(w_n=|v_n|\) as well as \(v_n\).)

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}A(g(v_n))\nabla w_n\nabla \varphi \text{ d }x =\int _{{\mathbb {R}}^3}A_{\infty }\nabla w_n\nabla \varphi \text{ d }x\\&\quad +\int _{{\mathbb {R}}^3}(A(g(v))-A_{\infty })\nabla w\nabla \varphi \text{ d }x+o_{n}(1)\Vert \varphi \Vert _{{\mathfrak {D}}}. \end{aligned} \nonumber \\ \end{aligned}$$
(a14)

For \(\varphi \in C_0^{\infty }({\mathbb {R}}^3),\) \(\varphi \ge 0,\) choose \(\varphi _n=\sigma _n^{\frac{1}{2}}\varphi (\sigma _n\cdot )\) as test function in (a14) (for simplicity we use \(\sigma _n\) instead of \(\sigma _{n,k}\)), then

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}A(g(v_n))\nabla w_n\nabla \varphi _n\text{ d }x\\&\quad =\int _{{\mathbb {R}}^3}A_{\infty }\nabla w\nabla \varphi _n\text{ d }x +\int _{{\mathbb {R}}^3}(A(g(v))-A_{\infty })\nabla w\nabla \varphi _n\text{ d }x+o(1)\Vert \varphi _n\Vert \\&\quad =\int _{{\mathbb {R}}^3}A_{\infty }\nabla w(\sigma _n^{-\frac{1}{2}}\cdot )\nabla \varphi \text{ d }x +\int _{{\mathbb {R}}^3}(A(g(v))-A_{\infty })\nabla w\nabla \varphi _n\text{ d }x+o(1)\Vert \varphi \Vert \\&\quad \rightarrow A_{\infty }\int _{{\mathbb {R}}^3}\nabla w\nabla \varphi \text{ d }x,\ \ \ \text{ as } \ \ \ n\rightarrow \infty . \end{aligned} \nonumber \\ \end{aligned}$$
(a15)

Similarly, \(K_{n}\int _{{\mathbb {R}}^3}B(g(v_n))\nabla w_n\nabla \varphi _n\text{ d }x\rightarrow K_{\infty }B_{\infty }\int _{{\mathbb {R}}^3}\nabla w\nabla \varphi \text{ d }x\) as \(n\rightarrow \infty .\) Finally,

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}f_{\lambda _n}(g(v_n))g'(v_n)\varphi _n\text{ d }x\\&\quad =\int _{{\mathbb {R}}^3}\frac{|g(v_n)|^{11}+\mu |g(v_n)|^{q-1}}{\sqrt{M^2+g^2(v_n)}}\varphi _n\text{ d }x\\&\quad \le \int _{{\mathbb {R}}^3}(g^{10}(v_n)+\mu |g(v_n)|^{q-2})\varphi _n\text{ d }x\\&\quad \le \int _{{\mathbb {R}}^3}(2^{5}w_n^5+cw_n^{\frac{q}{2}-1})\varphi _n\text{ d }x \rightarrow 2^{5}\int _{{\mathbb {R}}^3}w^5\varphi \text{ d }x. \end{aligned} \nonumber \\ \end{aligned}$$
(a16)

The inequality (a10) follows. \(\square \)

Corollary A6

The index set \(\Lambda \) is a finite set.

Proof

By Lemma \(A_5,\)

$$\begin{aligned} \begin{aligned} \alpha \int _{{\mathbb {R}}^3}|\nabla U_k|^2\text{ d }x \le 2^{5}\int _{{\mathbb {R}}^3}U_k^6\text{ d }x \le 2^{5}S^3\int _{{\mathbb {R}}^3}|\nabla U_k|^2\text{ d }x, \end{aligned} \end{aligned}$$

where S is the best constant for the imbedding \( {\mathfrak {D}}\) into \(L^{6}({\mathbb {R}}^3).\) Hence there exists \(m>0\) such that \(\int _{{\mathbb {R}}^3}|\nabla U_k|^2\text{ d }x\ge m.\) By the profile decomposition (4.11), \(\Lambda \) is a finite set. \(\square \)

Remark A7

By Lemma \(A_5,\) there exists \(c,\alpha >0\) such that

$$\begin{aligned} \left| v(x) \right| \le c e^{-\alpha |x|},\ \ |U_k(x)|\le c(1+|x|^2)^{-\frac{1}{2}},\ \ x\in {\mathbb {R}}^3. \end{aligned}$$

By using the profile decomposition, the following Lemma \(A_8\) and Lemma \(A_9\) can be proved in a similar way as in Devillanova and Solimini (2002), Cao et al. (2012), Guo et al. (2016).

Lemma A8

Let \(3<p_2<6<p_1,\) then

$$\begin{aligned} \Vert v_n\Vert _{p_1,p_2,\sigma _n}\le c, \end{aligned}$$

where \(\sigma _n=\min \{\sigma _{n,k},k\in \Lambda \}\) and the norm \(\Vert \cdot \Vert _{p_1,p_2,\sigma _n}\) is defined as follows

$$\begin{aligned} \begin{aligned} \Vert v\Vert _{p_1,p_2,\sigma _{n}}&=\inf \{\alpha | \text{ there } \text{ exists } v_1,v_2 \text{ such } \text{ that } |v(x)|\le v_1(x)+v_2(x),\ x\in {\mathbb {R}}^3\\&\Vert v_1\Vert _{L^{p_1}({\mathbb {R}}^3)}\le \alpha ,\ \Vert v_2\Vert _{L^{p_2}({\mathbb {R}}^3)}\le \alpha \sigma _n^{\frac{1}{2}-\frac{3}{p_2}}\}; \end{aligned} \end{aligned}$$

Lemma A9

There exists a constant c,  independent of n,  such that

$$\begin{aligned} |v_n(x)|\le c \text{ for } x\in T_n, \ \ \ \int _{T_n}|\nabla v_n|^2\text{ d }x\le c\sigma _n^{-\frac{1}{2}}, \end{aligned}$$

where

$$\begin{aligned} T_n=\{x|x\in {\mathbb {R}}^3,\ \sigma _n^{-\frac{1}{2}}\le |x|\le 2\sigma _n^{-\frac{1}{2}}\}. \end{aligned}$$

Remark A10

The definition of \(\Vert \cdot \Vert _{{p_1,p_2,\sigma _{n}}}\) was introduced in Devillanova and Solimini (2002). By Lemma \(A_7\), we have \(\Vert v\Vert _{p_1,p_2,\sigma _{n}}\le c\) and

$$\begin{aligned} \begin{aligned}&\Vert \Sigma _{k\in \Lambda }\sigma _{n,k}^{\frac{1}{2}}U_k(\sigma _{n,k}\cdot )\Vert _{L^{p_2}({\mathbb {R}}^3)} \le \Sigma _{k\in \Lambda }\left( \int _{{\mathbb {R}}^3}|\sigma _{n,k}^{\frac{1}{2}}U_k(\sigma _{n,k}\cdot )|^{p_2}\text{ d }x \right) ^{\frac{1}{p_2}}\\&=\Sigma _{k\in \Lambda }\sigma _{n,k}^{\frac{1}{2}-\frac{3}{p_2}}\left( \int _{{\mathbb {R}}^3}|U_k(x)|^{p_2}\text{ d }x \right) ^{\frac{1}{p_2}}\le c\Sigma _{k\in \Lambda }\sigma _{n,k}^{\frac{1}{2}-\frac{3}{p_2}} \left( \int _{{\mathbb {R}}^3}(1+x^2)^{-\frac{p_2}{2}}\text{ d }x \right) ^{\frac{1}{p_2}}\\&\le c\Sigma _{k\in \Lambda }\sigma _{n,k}^{\frac{1}{2}-\frac{3}{p_2}}\le c\sigma _{n}^{\frac{1}{2}-\frac{3}{p_2}}. \end{aligned} \end{aligned}$$

Since \(v_n=v+\sum _{k\in \Lambda }\sigma _{n,k}^{\frac{1}{2}}U_k(\sigma _{n,k}\cdot )+r_n\) and \(r_n\) is small in \(L^6({\mathbb {R}}^3),\) we may expect \(\Vert v_n\Vert _{p_1,p_2,\sigma _n}\) to be bounded.

Due to the estimates in \(T_n,\) the region \(T_n\) is called safe region.

We need the following local Pohožaev identity.

Lemma A11

Assume v satisfies the following equation

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}(A(g(v))\nabla v\nabla \varphi +\frac{1}{2}A'(g(v))g'(v)|\nabla v|^2\varphi )\text{ d }x+\int _{{\mathbb {R}}^3}V(x)g(v)g'(v)\varphi \text{ d }x\\&\qquad +\int _{{\mathbb {R}}^3}B(g(v))|\nabla v|^2\text{ d }x\cdot \int _{{\mathbb {R}}^3}(B(g(v))\nabla v\nabla \varphi +\frac{1}{2}B'(g(v))g'(v)|\nabla v|^2\varphi )\text{ d }x\\&\quad =\int _{{\mathbb {R}}^3}f_{\lambda }(g(v))g'(v)\varphi \text{ d }x, \ \ \ \text{ for } \ \ \ \varphi \in C_0^{\infty }({\mathbb {R}}^3). \end{aligned} \nonumber \\ \end{aligned}$$
(a17)

Then

$$\begin{aligned} & \int _{{\mathbb {R}}^3}(3F_{\lambda }(g(v))-\frac{1}{2}f_{\lambda }(g(v)g'(v)))\psi \text{ d }x -\frac{3}{2}\int _{{\mathbb {R}}^3}V(x)g^2(v)\psi \text{ d }x\nonumber \\ & \qquad +\frac{1}{2}\int _{{\mathbb {R}}^3}V(x)g(v)g'(v)v\psi \text{ d }x\nonumber \\ & \qquad -\frac{1}{2}\int _{{\mathbb {R}}^3}(x,\nabla V)g^{2}(v)\text{ d }x\ \ +\frac{1}{4}\int _{{\mathbb {R}}^3}A'(g(v))g'(v)|\nabla v|^2v\psi \text{ d }x\nonumber \\ & \qquad +\frac{1}{4}\int _{{\mathbb {R}}^3}B'(g(v))|\nabla v|^2v\psi \text{ d }x\nonumber \\ & \quad =-\frac{1}{2}\int _{{\mathbb {R}}^3}A(g(v))v(\nabla v,\nabla \psi )\text{ d }x -\int _{{\mathbb {R}}^3}A(g(v))(x,\nabla v)(\nabla v,\nabla \psi )\text{ d }x\nonumber \\ & \qquad +\frac{1}{2}\int _{{\mathbb {R}}^3}A(g(v))|\nabla v|^2(x,\nabla \psi )\text{ d }x+\frac{1}{2}\int _{{\mathbb {R}}^3}V(x)g^2(v)(x,\nabla \psi )\text{ d }x\nonumber \\ & \qquad +\int _{{\mathbb {R}}^3}B(g(v))|\nabla v|^2\text{ d }x \{-\frac{1}{2}\int _{{\mathbb {R}}^3}B(g(v))v(\nabla v,\nabla \psi )\text{ d }x\nonumber \\ & \qquad -\int _{{\mathbb {R}}^3}B(g(v))(x,\nabla v)(\nabla v,\nabla \psi )\text{ d }x \nonumber \\ & \qquad +\frac{1}{2}\int _{{\mathbb {R}}^3}B(g(v))|\nabla v|^2(x,\nabla \psi )\text{ d }x \}- \int _{{\mathbb {R}}^3}F_{\lambda }(g(v))(x,\nabla \psi )\text{ d }x,\ \text{ for } x\in C_0^{\infty }(B_{\delta }(0)). \nonumber \\ \end{aligned}$$
(a18)

Proof

Multiplying (a17) by \(\varphi =(x,\nabla v)\psi \) and integrating by parts we obtain

$$\begin{aligned} \begin{aligned}&-\frac{1}{2}\int _{{\mathbb {R}}^3}A(g(v))|\nabla v|^2\psi \text{ d }x +\int _{{\mathbb {R}}^3}A(g(v))(x,\nabla v)(\nabla v,\nabla \psi )\text{ d }x\\&\qquad -\frac{1}{2}\int _{{\mathbb {R}}^3}A(g(v))|\nabla v|^2(x,\nabla \psi )\text{ d }x -\frac{3}{2}\int _{{\mathbb {R}}^3}V(x)g^2(v)\psi \text{ d }x\\&\qquad -\frac{1}{2}\int _{{\mathbb {R}}^3}(x, \nabla V)g^2(v)\psi \text{ d }x-\frac{1}{2}\int _{{\mathbb {R}}^3}V(x)g^2(v)(x,\nabla \psi )\text{ d }x\\&\qquad +\int _{{\mathbb {R}}^3}B(g(v))|\nabla v|^2\text{ d }x\{-\frac{1}{2}\int _{{\mathbb {R}}^3}B(g(v))|\nabla v|^2\psi \text{ d }x\\&\qquad +\int _{{\mathbb {R}}^3}B(g(v))(x,\nabla v)(\nabla v,\nabla \psi )\text{ d }x -\frac{1}{2}\int _{{\mathbb {R}}^3}B(g(v))|\nabla v|^2(x,\nabla \psi )\text{ d }x\}\\&\quad =-3\int _{{\mathbb {R}}^3}F_{\lambda }(g(v))\psi \text{ d }x -\int _{{\mathbb {R}}^3}F_{\lambda }(g(v))(x,\nabla \psi )\text{ d }x. \end{aligned} \nonumber \\ \end{aligned}$$
(a19)

Multiplying (a17) by \(\varphi =v\psi ,\) we obtain

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^3}A(g(v))|\nabla v|^2\psi \text{ d }x +\int _{{\mathbb {R}}^3}A(g(v))\nabla v v\nabla \psi \text{ d }x+\frac{1}{2}\int _{{\mathbb {R}}^3}A'(g(v))g'(v) v\psi \text{ d }x\\&\qquad +\int _{{\mathbb {R}}^3}V(x)g(v)g'(v)\left| \nabla v\right| ^{2} v\psi \text{ d }x+\int _{{\mathbb {R}}^3}B(g(v))|\nabla v|^2\text{ d }x\left\{ \int _{{\mathbb {R}}^3}B(g(v))|\nabla v|^2\psi \text{ d }x \right. \\&\qquad \left. +\int _{{\mathbb {R}}^3}B(g(v))\nabla v v\nabla \psi \text{ d }x +\frac{1}{2}\int _{{\mathbb {R}}^3}B'(g(v))g'(v)|\nabla v|^2v\psi \text{ d }x\right\} \\&\quad =\int _{{\mathbb {R}}^3}f_{\lambda }(g(v))g'(v)v\psi \text{ d }x. \end{aligned}\nonumber \\ \end{aligned}$$
(a20)

The local Pohožaev identity (a18) follows from (a19), (a20) by eliminating the term

$$\begin{aligned} \int _{{\mathbb {R}}^3}A(g(v))|\nabla v|^2\psi \text{ d }x+ \int _{{\mathbb {R}}^3}B(g(v))|\nabla v|^2\text{ d }x\cdot \int _{{\mathbb {R}}^3}B(g(v))|\nabla v|^2\psi \text{ d }x. \end{aligned}$$

This completes the proof. \(\square \)

Proof of Proposition 4.1. Apply the local Pohožaev identity to the solution \(v_n\) and choose a function \(\psi \in C_0^{\infty }(B_{ \delta }(0))\) such that \(\psi (x)=1\) for \(|x|\le \sigma _n^{-\frac{1}{2}};\) \(\psi (x)=0\) for \(|x|\ge 2\sigma _n^{-\frac{1}{2}}\) and \(|\nabla \psi |\le 2\sigma _n^{\frac{1}{2}}.\) In the region \(T_n,\) \(|x|\le 2\sigma _n^{-\frac{1}{2}}.\) The right hand side of (a18), by Lemma \(A_9\)

$$\begin{aligned} RHS\le c\int _{T_n}(|\nabla v_n|^2+|\nabla v_n||v_n|\sigma _n^{-\frac{1}{2}}+|v_n|^6+|v_n|)\text{ d }x \le c\sigma _n^{-\frac{1}{2}}. \end{aligned}$$
(a21)

We estimate the left hand side of (a18). By Lemma 4.1,

$$\begin{aligned} \begin{aligned}&3F_{\lambda }(g(v))-\frac{1}{2}f_{\lambda }(g(v))g'(v)v\\&\quad =3H_{\lambda }(g(v))-\frac{1}{2}h_{\lambda }(g(v))g'(v)v+\frac{3}{q}\mu |g(v)|^q-\frac{1}{2}\mu |g(v)|^{q-2} g(v)g'(v)v\\&\quad \ge \frac{1}{4}h_{\lambda }(g(v))(g(v)-2g'(v)v)+ \left( \frac{3}{q}-\frac{1}{4}\right) \mu |g(v)|^q\\&\qquad +\frac{1}{4}\mu |g(v)|^{q-2} g(v)(g(v)-2g'(v)v)\\&\quad \ge c\mu |g(v)|^q-c|g(v)|^{11}\frac{\ln g(v)}{\sqrt{M^2+g^2(v)}}-c|g(v)|^{q-1}\frac{\ln g(v)}{\sqrt{M^2+g^2(v)}}\\&\quad \ge c\mu |g(v)|^{q}-c, \end{aligned}\nonumber \\ \end{aligned}$$
(a22)

In the above we have used the assumption \(q\in (10,12).\)

Also we have

$$\begin{aligned} \left| \frac{3}{2}V(x)g^2(v)-\frac{1}{2}V(x)g(v)g'(v)v+\frac{1}{2}(x,\nabla v)g^2(v) \right| \le \varepsilon |g(v)|^q+c. \end{aligned}$$
(a23)

Notice that \(A'(t)t\ge 0,\) \(B'(t)t\ge 0\) for \(t\in {\mathbb {R}}.\) The left side side of (a18)

$$\begin{aligned} LHS\ge c\int _{B_n}|g(v_n)|^{q}\text{ d }x-\int _{{\mathbb {R}}^3}\psi \text{ d }x\ge c\int _{B_n}|g(v_n)|^{q}\text{ d }x -c\sigma _n^{-\frac{3}{2}}, \end{aligned}$$
(a24)

where

$$\begin{aligned} B_n=\{x|x\in {\mathbb {R}}^3,|x|\le \sigma _n^{-\frac{1}{2}} \}. \end{aligned}$$

Choose L large enough such that \(\int _{B_1(0)}|U_1|^{\frac{q}{2}}\text{ d }x=m>0.\) For n large enough \(B_{L\sigma _n^{-1}}(0)\subseteq B_{\sigma _n^{-\frac{1}{2}}}(0)=B_n.\) We have

$$\begin{aligned} \begin{aligned} \int _{B_n}|g(v_n)|^{q}\text{ d }x&\ge \int _{B_{L\sigma _n}(0)}|g(v_n)|^{q}\text{ d }x =\int _{B_{L}(0)}\left| \frac{g(v_n(\sigma _n^{-1}x))}{\sigma _n^{\frac{1}{4}}} \right| ^{q}\text{ d }x \cdot \sigma _n^{\frac{q}{4}-3}\\&\sim \int _{B_{L}(0)}(2|U|)^{\frac{q}{2}}\text{ d }x\sigma _n^{\frac{q}{4}-3}, \end{aligned} \nonumber \\ \end{aligned}$$
(a25)

since

$$\begin{aligned} \left| \frac{g(v_n(\sigma _n^{-1}x))}{\sigma _n^{\frac{1}{4}}}\right| =\frac{|g(v_n(\sigma _n^{-1}x))|}{|v_n(\sigma _n^{-1}x)|^{\frac{1}{2}}} \cdot |\sigma _n^{-\frac{1}{2}}v_n(\sigma _n^{-1}x)|^{\frac{1}{2}}{\mathop {\rightarrow }\limits ^{a.e.}} \sqrt{2|U_1(x)|} \text{ as } |x|\rightarrow \infty . \end{aligned}$$

We arrive at a contradiction for \(\sigma _n\) sufficiently large that

$$\begin{aligned} \sigma _n^{\frac{q}{4}-3}\le c\sigma _n^{-\frac{1}{2}},\ \ \ \text{ and } \ \ q>10. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, X., Zhao, J., Lian, H. et al. Nodal solutions for quasilinear equations of Kirchhoff type in \({\mathbb {R}}^3\). Comp. Appl. Math. 44, 52 (2025). https://doi.org/10.1007/s40314-024-02996-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02996-w

Keywords

Mathematics Subject Classification

Navigation