Abstract
Metal–insulator–metal (MIM) diodes are among the most promising candidates for applications in the high frequency regime. Owing to the tunneling dominant current conduction mechanism, they facilitate femtosecond fast switching time, which has drawn great research attention for many potential high-speed applications and especially as a rectifier in rectenna based energy harvesting. Since its advent in the early 1960s, a lot of development has occurred in various aspects of design, fabrication and characterization of MIM diodes for rectenna applications. In this work, a detailed study on MIM diodes is conducted emphasizing the advancements in design and fabrication of MIM diodes and future challenges from the point of view of their application in rectennas. In addition, the fabrication and characterization of a graphene (Gr) based Al/AlOx/Gr MIM diode are also presented herein, exhibiting highly asymmetric current–voltage characteristics with large current density and a good degree of nonlinearity. An asymmetricity exceeding 2500 and the corresponding current density up to ∼ 1 A/cm2 were obtained at a voltage bias of 1 V. The peak nonlinearity was ∼ 3.8, whereas the zero bias resistance was as low as ∼ 600 Ω. These performance metrics are highly desirable for rectification operation and hence the as-fabricated Al/AlOx/Gr MIM diode holds great promise for its potential use as a rectifying element in rectennas.
Similar content being viewed by others
References
J.G. Simmons, J. Phys. D Appl. Phys. 4, 5 (1971).
J.C. Fisher and I. Giaever, J. Appl. Phys. 32, 2 (1961). https://doi.org/10.1063/1.1735973.
S. Keith, Champlin Gadi Eisenstein 26, 1 (1978). https://doi.org/10.1109/TMTT.1978.1129302.
Rainer Waser and Masakazu Aono, Nat. Mater. 6, 11 (2007). https://doi.org/10.1038/nmat2023.
M. Heiblum, Solid State Electron. 24, 4 (1981). https://doi.org/10.1016/0038-1101(81)90029-0.
S.K. Masalmeh, H.K.E. Stadermann, and J. Korving, Physica B 218, 1 (1996). https://doi.org/10.1016/0921-4526(95)00558-7.
S. Krishnan, S. Bhansali, E. Stefanakos, and D.Y. Goswami, Procedia Chem. 1, 1 (2009). https://doi.org/10.1016/j.proche.2009.07.102.
T.K. Gustafson, R.V. Schmidt, and J.R. Perucca, Appl. Phys. Lett. 24, 12 (1974). https://doi.org/10.1063/1.1655078.
R.L. Baily, J. Eng. Power 94, 2 (1972). https://doi.org/10.1115/1.3445660.
W.C. Brown, IEEE Trans. Microwave Theory Technol. 32, 9 (1984).
D.K. Kotter, S.D. Novack, W.D. Slafer, and P. Pinhero. In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences (American Society of Mechanical Engineers, 2008), pp. 409–415. https://doi.org/10.1115/es2008-54016.
E. Donchev, J.S. Pang, P.M. Gammon, A. Centeno, F. Xie, P.K. Petrov, J.D. Breeze, M.P. Ryan, D.J. Riley, and N.M. Alford, MRS Energy Sustain. (2014). https://doi.org/10.1557/mre.2014.6.
N.M. Miskovsky, P.H. Cutler, A. Mayer, B.L. Weiss, B. Willis, T.E. Sullivan, and P.B. Lerner, J. Nanotechnol. (2012). https://doi.org/10.1155/2012/512379.
S. Shriwastava, K. Bhatt, S. Sharma, S. Kumar, and C.C. Tripathi, in International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 83–88 (2017). https://doi.org/10.1109/icicct.2017.7975164.
L. Mescia and A. Massaro, Adv. Mater. Sci. Eng., 2014, Article ID 252879 (2014). https://doi.org/10.1155/2014/252879.
Simon Hemour and Ke Wu, Proc. IEEE 102, 11 (2014). https://doi.org/10.1109/JPROC.2014.2358691.
R.H. Fowler and L. Nordheim, Proc. R. Soc. Lond. Ser. A 119, 781 (1928). https://doi.org/10.1098/rspa.1928.0091.
B.J. Eliasson, Metal–Insulator–Metal Diodes for Solar Energy Conversion. Ph.D. Thesis, University of Colorado at Boulder, Boulder (2001).
J.G. Simmons, J. Appl. Phys. 34, 2581 (1963). https://doi.org/10.1063/1.1729774.
A. Sanchez, C.F. Davis Jr, K.C. Liu, and A. Javan, J. Appl. Phys. 49, 10 (1978). https://doi.org/10.1063/1.324426.
J.W. Dees, Microwave J. 9, 48 (1966).
B. Twu and S.E. Schwarz, Appl. Phys. Lett. 25, 10 (1974). https://doi.org/10.1063/1.1655325.
R.E. Drullinger, K.M. Evenson, D.A. Jennings, F.R. Petersen, J.C. Bergquist, and L. Burkins, Appl. Phys. Lett. 42, 2 (1983). https://doi.org/10.1063/1.93852.
S.I. Green, J. Appl. Phys. 42, 3 (1971). https://doi.org/10.1063/1.1660161.
H.D. Riccius, Appl. Phys. Lett. 27, 232 (1975). https://doi.org/10.1063/1.88440.
J.G. Small, G.M. Elchinger, A. Javan, A. Sanchez, F.J. Bachner, and D.L. Smythe, Appl. Phys. Lett. 24, 6 (1974). https://doi.org/10.1063/1.1655181.
S.W.M. Heiblum, J. Whinnery, and T. Gustafson, IEEE J. Quantum Electron. 14, 3 (1978). https://doi.org/10.1109/JQE.1978.1069765.
A. Sommerfeld and H. Bethe, Handbuch der Physik, Vol. 24/2, ed. H. Geiger and K. Scheel (Berlin: Julius Springer, 1933), p. 450.
R. Holm, J. Appl. Phys. 22, 569 (1951). https://doi.org/10.1063/1.1700008.
J.G. Simmons, J. Appl. Phys. 34, 6 (1963). https://doi.org/10.1063/1.1702682.
G. Chapline Michael and X. Wang Shan, J. Appl. Phys. 101, 8 (2007). https://doi.org/10.1063/1.2714784.
Sachit Grover and Garret Moddel, Solid State Electron. 67, 1 (2012). https://doi.org/10.1016/j.sse.2011.09.004.
I.E. Hashem, N.H. Rafat, and E.A. Soliman, IEEE J. Quantum Electron. 49, 1 (2013). https://doi.org/10.1109/JQE.2012.2228166.
C.S. Lent and D.J. Kirkner, J. Appl. Phys. 67, 10 (1990). https://doi.org/10.1063/1.345156.
S. Datta, Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press, 2005).
M.R. Abdel-Rahman, M. Syaryadhi, and N. Debbar, Electron. Lett. 49, 5 (2013). https://doi.org/10.1049/el.2012.4222.
E.W. Cowell III, S.W. Muir, D.A. Keszler, and J.F. Wager, J. Appl. Phys. 114, 21 (2013). https://doi.org/10.1063/1.4839695.
M.F. Zia, M.R. Abdel-Rahman, N.F. Al-Khalli, and N.A. Debbar, Acta Phys. Pol., A 127, 4 (2015). https://doi.org/10.12693/APhysPolA.127.1289.
J.G. Simmons, J. Appl. Phys. 35, 8 (1964).
T. O’Regan, M. Chin, C. Tan, and A. Birdwell, ARL-TN -0464 (2011).
M.L. Chin, P. Periasamy, T.P. O’Regan, M. Amani, C. Tan, R.P. O’Hayre, J.J. Berry, R.M. Osgood III, P.A. Parilla, D.S. Ginley, and M. Dubey, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 31, 5 (2013). https://doi.org/10.1116/1.4818313.
F.-C. Chiu, Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/578168.
S.K. Kim, S.W. Lee, J.H. Han, B. Lee, S. Han, and C.S. Hwang, Adv. Func. Mater. 20, 18 (2010). https://doi.org/10.1002/adfm.201000599.
S. Shriwastava, K. Bhatt, S.K. Sandeep, and C.C. Tripathi, in 2017 2nd International Conference for Convergence in Technology (I2CT), India, pp. 738–741 (2017). https://doi.org/10.1109/i2ct.2017.8226226.
K. Choi, Novel Tunneling Diodes for a High Performance Infrared Rectenna. University of Maryland, College Park, Ph.D. Thesis (2011).
J.H. Shin, J. Im, J.-W. Choi, H.S. Kim, J.I. Sohn, S.N. Cha, and J.E. Jang, Carbon 102, 172 (2016).
A.J. Bergren, K.D. Harris, F. Deng, and R.L. McCreery, J. Phys.: Condens. Matter (2008). https://doi.org/10.1088/0953-8984/20/37/374117.
R. Kumar, H. Yan, R.L. McCreery, and A.J. Bergren, Phys. Chem. Chem. Phys. 13, 14318 (2011).
E. Donchev, Thin Film Diode Structures for Advanced Energy Applications, PhD Thesis, University of South Florida (2015).
P. Dudek, R. Schmidt, M. Lukosius, G. Lupina, Ch Wenger, A. Abrutis, M. Albert, K. Xu, and A. Devi, Thin Solid Films 519, 17 (2011). https://doi.org/10.1016/j.tsf.2010.12.195.
R. Urcuyo, D.L. Duong, H.Y. Jeong, M. Burghard, and K. Kern, Adv. Electron. Mater. 2, 9 (2016). https://doi.org/10.1002/aelm.201600223.
M. Shaygan, Z. Wang, M.S. Elsayed, M. Otto, G. Iannaccone, A.H. Ghareeb, G. Fiori, R. Negra, and D. Neumaier, Nanoscale (2017). https://doi.org/10.1039/c7nr02793a.
S. Hwan Lee, M. Sup Choi, J. Lee, C. Ho Ra, X. Liu, E. Hwang, J. Hee Choi, J. Zhong, W. Chen, and W. Jong Yoo, Appl. Phys. Lett. 104, 053103 (2014). https://doi.org/10.1063/1.4863840.
P. Periasamy, J.J. Berry, A.A. Dameron, J.D. Bergeson, D.S. Ginley, R.P. O’Hayre, and P.A. Parilla, Adv. Mater. 23, 3080 (2011). https://doi.org/10.1002/adma.201101115.
K. Gloos, P.J. Koppinen, and J.P. Pekola, J. Phys.: Condens. Matter 15, 1733 (2003).
J. Kadlec and K.H. Gundlach, Solid State Commun. 16, 5 (1975). https://doi.org/10.1016/0038-1098(75)90438-X.
D.A. Neamen, Semiconductor Physics and Devices: Basic Principles. Richard D. Irwin Inc. ISBN 0-256-0B405-X, 1992, Homewood IL 60430 (1992).
F. Aydinoglu, M. Alhazmi, B. Cui, O.M. Ramahi, M. Irannejad, A. Brzezinski, and M. Yavuz, Austin J Nanomed. Nanotechnol. 1, 1 (2013).
B.J. Eliasson and G. Moddel, Metal-Oxide Electron Tunneling Device for Solar Energy Conversion. U.S. Patent 6,534,784 (2003).
B. Eliasson and G. Moddel, High Speed Electron Tunneling Device and Applications. US Patent 6,756,649 (2004).
P. Maraghechi, A. Foroughi-Abari, K. Cadien, and A.Y. Elezzabi, Appl. Phys. Lett. 100, 113503 (2012).
S. Grover, Diodes for Optical Rectenna. Ph.D. Thesis, University of Colorado, Boulder (2011).
B. Hegyi, A. Csurgay, and W. Porod, J. Comput. Electron. 6, 1 (2007). https://doi.org/10.1007/s10825-006-0083-9.
O.A. Ajayi, DC and RF Characterization of High Frequency ALD Enhanced Nanostructured Metal–Insulator Metal Diodes, Ph.D. thesis, University of South Florida (2014).
A.D. Weerakkody, N. Sedghi, I.Z. Mitrovic, H. van Zalinge, I. Nemr-Noureddine, S. Hall, J.S. Wrench, P.R. Chalker, L.J. Phillips, R. Treharne, and K. Durose, Microelectron. Eng. (2015). https://doi.org/10.1016/j.mee.2015.04.110.
S.B. Herner, A.D. Weerakkody, A. Belkadi, and G. Moddel, Appl. Phys. Lett. 110, 22 (2017). https://doi.org/10.1063/1.4984278.
I. Nemr Noureddine, N. Sedghi, I.Z. Mitrovic, and S. Hall, J. Vac. Sci. Technol., B 35, 1 (2017). https://doi.org/10.1116/1.4974219.
N. Alimardani and J.F. Conley Jr., in Proceedings of SPIE, vol. 8824 (2013). https://doi.org/10.1117/12.2024750.
N. Alimardani and J.F. Conley Jr, Appl. Phys. Lett. 105, 8 (2014). https://doi.org/10.1063/1.4893735.
P. Maraghechi, A. Foroughi-Abari, K. Cadien, and A.Y. Elezzabi, Appl. Phys. Lett. 99, 25 (2011). https://doi.org/10.1063/1.3671071.
D. Sekar, T. Kumar, P. Rabkin, and X. Costa, US Patent App. 13/787, 505 (2013).
I.Z. Mitrovic, A.D. Weerakkody, N. Sedghi, S. Hall, J.F. Ralph, J.S. Wrench, P.R. Chalker, Z. Luo, and S. Beeby, ECS Trans. 72, 2 (2016). https://doi.org/10.1149/07202.0287ecst.
W. Guo, Evaluation of e-Beam SiO 2 for MIM Application. M.S. Thesis, University of Alberta (2010).
S. Krishnan, E. Stefanakos, and S. Bhansali, Thin Solid Films 516, 8 (2008). https://doi.org/10.1016/j.tsf.2007.08.067.
P. Esfandiari, G. Bernstein, P. Fay, W. Porod, B. Rakos, A. Zarandy, B. Berland, L. Boloni, G. Boreman, B. Lail, and B. Monacelli, Infrared Technology and Applications, vol. XXXI (SPIE, Orlando, 2005).
N. Alimardani, S.W. King, B.L. French, C. Tan, B.P. Lampert, and J.F. Conley Jr, J. Appl. Phys. 116, 024508 (2014).
A. Singh, R. Ratnadurai, R. Kumar, S. Krishnan, Y. Emirov, and S. Bhansali, Appl. Surf. Sci. 334, 1 (2015). https://doi.org/10.1016/japsusc201409160.
K. Choi, G. Ryu, F. Yesilkoy, A. Chryssis, N. Goldsman, M. Dagenais, and M. Peckerar, J. Vac. Sci. Technol., B 28, 6 (2010). https://doi.org/10.1116/1.3501350.
P.C. Hobbs, R.B. Laibowitz, and F.R. Libsch, Appl. Opt. 44, 32 (2005). https://doi.org/10.1364/ao.44.006813.
P. Periasamy, H.L. Guthrey, A.I. Abdulagatov, P.F. Ndione, J.J. Berry, D.S. Ginley, S.M. George, P.A. Parilla, and R.P. O’Hayre, Adv. Mater. 25, 9 (2013). https://doi.org/10.1002/adma.201203075.
K. Mistry, M. Yavuz, and K.P. Musselman, J. Appl. Phys. 121, 18 (2017). https://doi.org/10.1063/1.4983256.
M. Bareiß, D. Kalblein, C. Jirauschek, A. Exner, I. Pavlichenko, B. Lotsch, U. Zschieschang, H. Klauk, G. Scarpa, B. Fabel, W. Porod, and P. Lugli, Appl. Phys. Lett. 101, 8 (2012). https://doi.org/10.1063/1.4745651.
Z. Thacker and P.J. Pinhero, IEEE Trans. Terahertz Sci. Technol. 6, 414 (2016). https://doi.org/10.1109/tthz.2016.2541684.
Y. Rawal, S. Ganguly, and S.M. Baghini, Act. Passive Electron. Compon. (2012). https://doi.org/10.1155/2012/694105.
N. Alimardani, E.W. Cowell III, J.F. Wager, and J.F. Conley Jr, J. Vac. Sci. Technol. A: Vac. Surf. Films 30, 1 (2012). https://doi.org/10.1116/1.3658380.
I.-T. Wu, N. Kislov, and J. Wang, Nanosci. Nanotechnol. Lett. 2, 144 (2010).
I. Wilke, W. Herrmann, and F.K. Kneubühl, Appl. Phys. B 58, 2 (1994). https://doi.org/10.1007/BF01082341.
C. Fumeaux, W. Herrmann, F.K. Kneubuhl, and H. Rothuizen, Infrared Phys. Technol. 39, 3 (1998). https://doi.org/10.1016/S1350-4495(98)00004-8.
J.A. Bean, B. Tiwari, G.H. Bernstein, P. Fay, and W. Porod, J. Vac. Sci. Technol., B 27, 1 (2009). https://doi.org/10.1116/1.3039684.
S. Krishnan, H. La Rosa, E. Stefanakos, S. Bhansali, and K. Buckle, Sens. Actuators, A 142, 1 (2008). https://doi.org/10.1016/j.sna.2007.04.021.
M.N. Gadalla, M. Abdel-Rahman, and A. Shamim, Sci. Rep. 4, 4270 (2014). https://doi.org/10.1038/srep04270.
M.R. Abdel-Rahman, F.J. Gonzalez, and G.D. Boreman, Electron. Lett. 40, 2 (2004). https://doi.org/10.1049/el:20040105.
F. Yesilkoy, IR Detection and Energy Harvesting Using Antenna Coupled MIM Tunnel Diodes. Ph.D. thesis, University of Maryland College Park (2012).
C. Zhuang, L. Wang, Z. Dai, and D. Yang, ECS Solid State Lett. 4, 5 (2015). https://doi.org/10.1149/2.0021505ssl.
A. Taurino, I. Farella, A. Cola, M. Lomascolo, F. Quaranta, and M. Catalano, J. Vac. Sci. Technol., B 31, 4 (2013). https://doi.org/10.1116/1.4811824.
M. Bareiß, F. Ante, D. Kalblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E.M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, ACS Nano 6, 3 (2012). https://doi.org/10.1021/nn3004058.
S. Zhang, L. Wang, X. Chen, D. Li, L. Chen, and D. Yang, ECS Solid State Lett. 2, 1 (2013). https://doi.org/10.1149/2.001301ssl.
R. Ratnadurai, S. Krishnan, E. Stefanakos, D.Y. Goswami, and S. Bhansali, in AIP Conference Proceedings, vol. 1313, p. 1 (2010). https://doi.org/10.1063/1.3530561.
A.A. Khan, G. Jayaswal, F.A. Gahaffar, and A. Shamim, Microelectron. Eng. (2017). https://doi.org/10.1016/j.mee.2017.07.003.
E.W. Cowell III, J. Wager, B. Gibbons, and D. Keszler, US Patent 8,436,337 (2013).
S. Krishnan, Y. Emirov, S. Bhansali, E. Stefanakos, and Y. Goswami, Thin Solid Films 518, 12 (2010). https://doi.org/10.1016/j.tsf.2009.10.021.
B. Tiwari, J.A. Bean, G. Szakmány, G.H. Bernstein, P. Fay, and W. Porod, J. Vac. Sci. Technol., B 27, 5 (2009). https://doi.org/10.1116/1.3204979.
N. Debbar, M. Syaryadhi, and M. Abdel-Rahman, Eur. Phys. J. Appl. Phys. 68, 3 (2014). https://doi.org/10.1051/epjap/2014130489.
J. Shirakashi, K. Matsumoto, N. Miura, and M. Konagai, Jpn. J. Appl. Phys. 36, 8B (1997).
E.G. Arsoy, M. Inac, A. Shafique, M. Ozcan, and Y. Gurbuz, Infrared Technol. Appl. XLII, 9819 (2016). https://doi.org/10.1117/12.2224748.
N. Alimardani, E.W. Cowell III, J.F. Wager, and J.F. Conley, Jr. 221st ECS Meeting (2012).
F.M. Alhazmi, F. Aydinoglu, B. Cui, O.M. Ramahi, M. Irannejad, A. Brzezinski, and M. Yavuz, Austin J Nanomed. Nanotechnol. 2, 2 (2014).
N. Alimardani, J.M. McGlone, J.F. Wager, and J.F. Conley Jr, J. Vac. Sci. Technol., A 32, 01A122 (2013). https://doi.org/10.1116/1.4843555.
I. Azad, M.K. Ram, D.Y. Goswami, and E. Stefanakos, Langmuir (2016). https://doi.org/10.1021/acs.langmuir.6b02182.
S. Krishnan, Thin Film Metal–Insulator–Metal Tunnel Junctions for Millimeter Wave Detection. Ph.D. Thesis, University of South Florida (2004).
S. Sharma, Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection Devices. Ph.D. Thesis, University of South Florida, (2015).
M. Celestin, S. Krishnan, D.Y. Goswami, E. Stefanakos, and S. Bhansali, Procedia Eng. 1, 1 (2010). https://doi.org/10.1016/j.proeng.2010.09.291.
D. Etor, L.E. Dodd, D. Wood, and C. Balocco, Appl. Phys. Lett. 109, 19 (2016). https://doi.org/10.1063/1.4967190.
S. Shriwastava, K. Bhatt, S. Sharma, S. Kumar, and C.C. Tripathi, Int. J. Nanoparticles 10, 207 (2018). https://doi.org/10.1504/ijnp.2018.094046.
P. Periasamy, M.S. Bradley, P.A. Parilla, J.J. Berry, D.S. Ginley, R.P. O’Hayre, and C.E. Packard, J. Mater. Res. 28, 14 (2013). https://doi.org/10.1557/jmr.2013.171.
A.A. Khan, Investigation of MIM Diodes for RF Applications, M.S. Thesis, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (2015).
B. Berland, Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell, (NREL, Golden, CO), p. 16 (2011).
Acknowledgments
The first author, Shilpi Shriwastava, gratefully acknowledges University Grants Commission (UGC), India (4062/(NET-JUNE 2013)) for providing financial assistance through JRF and SRF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shriwastava, S., Tripathi, C.C. Metal–Insulator–Metal Diodes: A Potential High Frequency Rectifier for Rectenna Application. J. Electron. Mater. 48, 2635–2652 (2019). https://doi.org/10.1007/s11664-018-06887-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-018-06887-9