Abstract
This review article provides the state-of-art research and developments of the rectenna device and its two main components–the antenna and the rectifier. Furthermore, the history, efficiency trends, and socioeconomic impact of its research are also featured.
The rectenna (RECTifying antENNA), which was first demonstrated by William C. Brown in 1964 as a receiver for microwave power transmission, is now increasingly researched as a means of harvesting solar radiation. Tapping into the growing photovoltaic market, the attraction of the rectenna concept is the potential for devices that, in theory, are not limited in efficiency by the Shockley–Queisser limit. In this review, the history and operation of this 40-year old device concept are explored in the context of power transmission and the ever increasing interest in its potential applications at terahertz frequencies, through the infrared and visible spectra. Recent modeling approaches that have predicted controversially high efficiency values at these frequencies are critically examined. It is proposed that to unlock any of the promised potential in the solar rectenna concept, there is a need for each constituent part to be improved beyond the current best performance, with the existing nanometer scale antennas, the rectification and the impedance matching solutions all falling short of the necessary efficiencies at terahertz frequencies. Advances in the fabrication, characterization, and understanding of the antenna and the rectifier are reviewed, and common solar rectenna design approaches are summarized. Finally, the socioeconomic impact of success in this field is discussed and future work is proposed.
Similar content being viewed by others
References
Shockley W. and Quiesser H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32 (3), 510–519 (1961).
Henry C.H.: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980).
Corkish R., Greem M.A., and Puzzer T.: Solar energy collection by antennas. Sol. Energy 73 (6), 395–401 (2002).
Goswami D., Vijayaraghavan S., Lu S., and Tamm G.: New and emerging developments in solar energy. Sol. Energy 76, 33–43 (2004).
Berland B.: Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell, subcontractor report; National Renewable Energy Laboratory, 2002. Found online at: http://www.nrel.gov/docs/fy03osti/33263.pdf.
McSpadden J., Fan L., and Chang K.: Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna. IEEE Trans. Microwave Theory Tech. 46 (12), 2053–2060 (1998).
Nahas J.J.: Modeling and computer simulation of a microwave-to-DC energy conversion element. IEEE Trans. Microwave Theory Tech. 2312, 1030–1035 (1975).
Razban T., Bouthinon M., and Coumes A.: Microstrip circuit for converting microwave low power to DC energy. IEE Proc. 132 (2), 107–109 (1985).
Mlinar V.: Engineered nanomaterials for solar energy conversion. Nanotechnology 24, 042001 (2013).
Moddel G. & Grover S., eds.: Rectenna Solar Cells; Springer: New York, 2013.
Zhu Z., Joshi S., Pelz B., and Moddel G.: Overview of optical rectennas for solar energy harvesting. Proc. SPIE 8824, 882400 (2013).
Bailey R.L.: A proposed new concept for a solar-energy converter. J. Eng. Power 94, 73–77 (1972).
Fletcher J.C. and Bailey R.L.: Electromagnetic wave energy converter. U.S. Patent 3 760 257, 1973.
Brown W.C.: The history of power transmission by radio waves. IEEE Trans. Microwave Theory Tech. 32 (9), 1230–1242 (1984).
Brown W.C.: The microwave powered helicopter. J. Microwave Power 1(1) (Symposium on Microwave Power, University of Alberta, March 24th, 1966).
Kraus J.D.: Antennas, 2nd ed.; McGraw-Hill: New York, 1988.
Miskovsky N., Cutler P., Mayer A., Weiss B., Willis B., Sullivan T.E., and Lerner P.B.: Nanoscale devices for rectification of high frequency radiation from the infrared through the visible: A new approach. J. Nanotechnol, 512379 (2012).
Hertz H.: Dictionary of Scientific Biography, Vol. VI; Scribner: New York, 2007, pp. 340–349.
Okress E., Ed.: Microwave Power Engineering, Vols. I, II; Academic Press: New York, 1968.
George R.H.: Solid state power rectifications. In Microwave Power Engineering, Vol. I; Okress E., ed.; Academic Press: New York, 1968, pp. 275–294.
Brown W., George R., Heenan N.I., and Wonson R.C.: Microwave to dc converter. U.S. Patent 3434678, March 26, 1969.
Glaser P.E.: Power from the sun, its future. Science 162, 857–886 (1968).
Brown W.C.: Satellite solar power station and microwave transmission to earth. J. Microwave Power 5 (4), (1970).
Brown W.C. and Maynard O.E.: Microwave Power Transmission in the Satellite Solar Power Station System, Raytheon Report ER 72-4038, January 27, 1972.
Brown W.C.: Satellite power stations - A new source of energy? IEEE Spectrum 10 (3), 38–47 (1973).
Glaser P., Maynard O., Macfcovciak J., Jr., and Ralph E.L.: Feasibility Study of a Satellite Solar Power Station; NASA Lewis Research Center: Cleveland, OH, 1974, CR-2357, NTIS N74-N17784.
Glaser P.E.: Method and apparatus for converting solar radiation to electrical power. U.S. Patent 3 781 647, 1973.
Shimokura N., Kaya N., Shinohara N., and Matsumoto H.: Point-to-point microwave power transmission experiment. Trans. Inst. Elect. Eng. Jpn. B 116 (6), 648–653 (1996).
Shinohara N. and Matsumoto H.: Experimental study of large rectenna array for microwave energy transmission. IEEE Trans. Microwave Theory Tech. 46 (3), 261–268 (1998).
Glaser P.E.: An overview of the solar power satellite option. IEEE Trans. Microwave Theory Tech. 40 (6), 1230–1238 (1992).
McSpadden J., Little F., Duke M.B., and Ignatiev A.: An in-space wireless energy transmission experiment. In Proc. IECEC Energy Conversion Engineering Conf. Vol. 1, pp. 468–473 (1996).
Yoo T. and Chang K.: Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans. Microwave Theory Tech. 40, 1259–1266 (1992).
Epp L., Khan A., Smith H.K., and Smith R.P.: A compact dualpolarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications. IEEE Trans. Microwave Theory Tech. 48, 111–120 (2000).
Fujino Y., Ito T., Fujita M., Kaya N., Matsumoto H., Kawabata K., Sawada H., and Onodera T.: A driving test of a small DC motor with a rectenna array. IEICE Trans. Commun. E77-B (4), 526–528 (1994).
Hagerty J., Helmbrecht F., McCalpin W., Zane R., and Popović Z.B.: Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans. Microwave Theory Tech. 52 (3), 1014–1024 (2004).
Yang X., Jiang C., Elsherbeni A., Yang F., and Wang Y.Q.: A novel compact printed rectenna for data communication systems. IEEE Trans. Antennas Propag. 61 (5), 2532–2539 (2013).
Bailey R., Callahan P.D., and Zahn M.: Electromagnetic Wave Energy Conversion Research, Final Report, April-30 September. NASA-CR-145876, 1975.
Marks A.M.: Device for conversion of light power to electric power. U.S. Patent 4 445 050, 1984.
Marks A.M.: Ordered dipolar light-electric power converter. U.S. Patent 4 574 161, 1986.
Marks A.M.: Femto diode and applications. U.S. Patent 4 720 642, 1988.
Marks A.M.: Lighting device with quantum electric/light power converters. U.S. Patent 4 972 094, 1990.
Lin G., Abdu R., and Bockris J.O.M.: Investigation of resonance light absorption and rectification by subnanostructures. J. Appl. Phys. 80, 565–568 (1996).
Gustafson T.K. and Billman K.: Metal-oxide-metal optical diodes. Ames. R.C. Rsch. Review, NASA J. 205–208 (1974).
Strassner B. and Chang K.: Microwave power transmission: Historical milestones and system components. Proc. IEEE 101 (6), 1379–1395 (2013).
Dickinson R.M. and Brown W.C.: Radiated Microwave Power Transmission System Efficiency Measurements, Tech. Memo 33-727; Jet Propulsion Lab., California Inst. Technol.: Pasadena, CA, Mar. 15, 1975.
Konovaltsev A., Luchaninov Y., Omarov M.A., and Shokalo V.M.: Developing wireless energy transfer systems using microwave beams: Applications and prospects. Telecom. Radio Eng. 55 (2), 21–29 (2001).
McSpadden J., Yoo T.W., and Chang K.: Theoretical and experimental investigation of a rectenna element for microwave power transmission. IEEE Trans. Microwave Theory Tech. 40 (12), 2359–2366 (1992).
Brown W.C. and Triner J.F.: Experimental thin-film, etched-circuit rectenna. Microwave Symp. K-4, 185–187 (1982).
Zbitou J., Latrach M., and Toutain S.: Hybrid rectenna and monolithic integrated zero-bias microwave rectifier. IEEE Trans. Microwave Theory Tech. 54 (1), 147–152 (2006).
Takhedmit H., Cirio L., Bellal S., Delcroix D., and Picon O.: Compact and efficient 2.45 GHz circularly polarised shorted ring-slot rectenna. Electron. Lett. 48 (5), 253–254 (2012).
Sun H., Guo Y.-X., and Zhong Z.: A high-sensitivity 2.45 GHz rectenna for low input power energy harvesting. In IEEE Antennas and Propagation Society International Symposium (APSURSI), 2012.
Sun H., Guo Y.-X., He M., and Zhong Z.: Design of a high-efficiency 2.45_-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wireless Propag. Lett. 11, 929–932 (2012).
Brown W.C. and Kim C.K.: Recent progress in power reception efficiency in a free-space microwave power transmission system. Microwave Symp. Dig. 74 (1), 332–333 (1974).
Gutmann R.J. and Borrego J.M.: Power combining in an array of microwave power rectifiers. IEEE Trans. Microwave Theory Tech. 27 (12), 958–968 (1979).
Heikkinen J. and Kivikoski M.: A novel dual-frequency circularly polarized rectenna. IEEE Antennas Wireless Propag. Lett. 2, 330–333 (2003).
Suh Y.-H. and Chang K.: A high-efficiency dual-frequency rectenna for 2.45_- and 5.8-GHz wireless power transmission. IEEE Trans. Microwave Theory Tech. 50 (7), 1784–1789 (2002).
Ren Y.-J., Farooqui M.F., and Chang K.: A compact dual-frequency rectifying antenna with high-orders harmonic rejection. IEEE Trans. Antennas Propag. 55 (7), 2110–2113 (2007).
Ito T., Fujino Y., and Fujita M.: Fundamental experiment of a rectenna array for microwave power reception, IEICE Trans. Commun. E76-B (12), 1508–1513 (1993).
Park J.-Y., Han S.-M., and Itoh T.: A rectenna design with harmonicrejecting circular-sector antenna. IEEE Antennas Wireless Propag. Lett. 3, 52–54 (2004).
Gao Y.-Y., Yang X.-X., Jiang C., and Zhou J.-Y.: A circularly polarized rectenna with low profile for wireless power transmission. Prog. Electromag. Res. Lett. 13, 41–49 (2010).
McSpadden J., Fan L., and Chang K.: A high-conversion-efficiency 5.8-GHz rectenna. Microwave Symp., IEEE MTT-S Dig. WE2B-6, 547–550 (1997).
Bharj S., Camisa R., Grober S., Wozniak F., and Pendleton E.: High efficiency C-band 1000 element rectenna array for microwave powered application. Microwave Symp., IEEE MTT-S Dig. IF1 G-1, 301–303 (1992).
Suh Y., Wang C., and Chang K.: Circularly polarised truncated-corner square patch microstrip rectenna for wireless power transmission. Electron. Lett. 36 (7), 600–602 (2000).
Strassner B. and Chang K.: Highly efficient C-band circularly polarized rectifying antenna array for wireless microwave power transmission. IEEE Trans. Antennas Propag. 51 (6), 1347–1356 (2003).
Strassner B. and Chang K.: A circularly polarized rectifying antenna array for wireless microwave power transmission with over 78% efficiency. IEEE MTT-S Int. Microwave Symp. Dig. 3, 1535–1538 (2002).
Ali M., Yang G., and Dougal R.: A new circularly polarized rectenna for wireless power transmission and data communication. IEEE Antennas Wireless Propag. Lett. 4, 205–208 (2005).
Ali M., Yang G., and Dougal R.: Miniature circularly polarized rectenna with reduced out-of-band harmonics. IEEE Antennas Wireless Propag. Lett. 5, 107–110 (2006).
Ren Y.-J. and Chang K.: 5.8 GHz broadened beam-width rectifying antennas using non-uniform antenna arrays. In IEEE Antennas and Propagation Society International Symposium, 2006, pp. 867–870.
Yang X.-X., Jiang C., Elsherbeni A., Yang F., and Wang Y.-Q.: A novel compact printed rectenna for communication systems. In Power and Energy Engineering Conference (APPEEC), 2012.
Fujimori K., Tada K., Ueda Y., Sanagi M., and Nogi S.: Development of high efficiency rectification circuit for mW-class rectenna. In IEEE European Microwave Conference, Vol. 2, 2005.
Strassner B. and Chang K.: 5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission application. IEEE Trans. Microwave Theory Tech. 51 (5), 1548–1553 (2003).
Chin C., Xue Q., and Chan C.H.: Design of a 5.8-GHz rectenna incorporating a new patch antenna. IEEE Antennas Wireless Propag. Lett. 4, 175–178 (2005).
Ren Y.-J. and Chang K.: 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission. IEEE Trans. Microwave Theory Tech. 54 (4), 1495–1502 (2006).
Tu W.-H., Hsu S.-H., and Chang K.: Compact 5.8-GHz rectenna using stepped-impedance dipole antenna. IEEE Antennas Wireless Propag. Lett. 6, 282–284 (2007).
Xuexia Y., Junshu X., Deming X., and Changlong X.: X-band circularly polarized rectennas for microwave power transmission applications. J. Electron. (China) 25 (3), 389–393 (2008).
Monti G., Tarricone L., and Spartano M.: X-band planar rectenna. IEEE Antennas Wireless Propag. Lett. 10, 1116–1119 (2010).
Yoo T.-W. and Chang K.: 35 GHz integrated circuit rectifying antenna with 33% efficiency. Electron. Lett. 27 (23), 2117 (1991).
Hong-Lei D. and Li K.: A novel high-efficiency rectenna for 35GHz wireless power transmission. In 4th Int. Conf. Micr. Mill. Wave Tech. Proc., 2004, pp. 114–117.
Chiou H.-K. and Chen I.-S.: High-efficiency dual-band on-chip rectenna for 35- and 94- GHz wireless power transmission in 0.13-m CMOS technology. IEEE Trans. Microwave Theory Tech. 58 (12), 3598–3606 (2010).
Pinhasi Y., Yakover I., Eichenbaum A.L., and Gover A.: Efficient electrostatic-accelerator free-electron masers for atmospheric power beaming. IEEE Trans. Plasma Sci. 24 (3), 1050–1057 (1996).
Koert P. and Cha J.-T.: Millimeter wave technology for space power beaming. IEEE Trans. Microwave Theory Tech. 40 (6), 1251–1258 (1992).
Ren Y.-J., Li M.-Y., and Chang K.: 35 GHz rectifying antenna for wireless power transmission. Electron. Lett. 43 (11), (2007).
Koert P., Cha J.-T., and Macina M.: 35 and 94 GHz rectifying antenna systems. In Power from Space Dig., Paris, France, Aug. 1991, pp. 541–547.
Brown W.C.: Optimization of the efficiency and other properties of the rectenna element. In Microwave Symp., IEEE MTT-S Int., 1976, pp. 142–144.
Brinster I., Lohn J., and Linden D.: An evolved rectenna for sensor networks. In IEEE APSURSI, 2013, pp. 418–419.
Huang F.-J., Lee C.-M., Chang C.-L., Chen L.-K., Yo T.-C., and Luo C.-H.: Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Trans. Antennas Propag. 59 (7), 2646–2653 (2011).
Brown W.C.: Experiments involving a microwave beam to power and position a helicopter. IEEE Trans. Aerospace Electronics Sys. AES-5 (5), 692–702 (1969).
Corkish R., Green M., Puzzer T., and Humphrey T.: Efficiency of antenna solar collection. In Proc. Photovoltaic Energy Conversion, Vol. 3, 2003, pp. 2682–2685.
NIST: Optical nanoantennas and nanodiodes using atomic layer deposition. (2002). Found online: www.boulder.nist.gov/div814/nanotech/antennas
Balanis C.: Antenna Theory. Analysis and Design, 2nd ed.; Wiley: New York, 1997.
Nunzi J.M.: Requirements for a rectifying antenna solar cell technology. Proc. SPIE 7712, 771204 (2010).
Berland B., Simpson L., Nuebel G., Collins T., and Lanning B.: Optical rectenna for direct conversion of sunlight to electricity. In National Center for Photovoltaics Program Review Meeting, NREL, 2001; p. 323–324.
Mashaal H. and Gordon J.M.: Efficiency limits for the rectification of solar radiation. J. Appl. Phys. 113, 193509 (2013).
Joshi S. and Moddel G.: Efficiency limits of rectenna solar cells: Theory of broadband photon-assisted tunneling. Appl. Phys. Lett. 102, 083901 (2013).
Kotter D., Novak S., Slafer W.D., and Pinhero P.: Solar antenna electromagnetic collectors. In 2nd International Conference on Energy Sustainability, August 2008, pp. 10–14.
Briones E., Alda J., and Gonzlez F.J.: Conversion efficiency of broad-band rectennas for solar energy harvesting applications. Opt. Express 21 (S3), A412–A418 (2013).
Lerner P., Miskovsky N., Cutler P., Mayer A., and Chung M.S.: Thermodynamic analysis of high frequency rectifying devices: Determination of the efficiency and other performance parameters. Nano Energy 2, 368–376 (2013).
Knight M., Sobhani H., Nordlander P., and Halas N.J.: Photodetection with active optical antennas. Science 332, 702–704 (2011).
Ma Z. and Vandenbosch G.A.E.: Optimal solar energy harvesting efficiency of nano-rectenna systems. Solar Energy 88, 163–174 (2013).
Sarehraz M., Buckle K., Weller T., Stefanakos E., Bhansali S., Goswami Y., and Krishnan S.: Rectenna developments for solar energy collection. In Photovoltaic Specialists Conference, 2005, pp. 78–81.
Vandenbosch G.A.E. and Ma Z.: Upper bounds for the solar energy harvesting efficiency of nano-antennas. Nano Energy 1, 494–502 (2012).
Stefanakos E., Goswami Y., and Bhansali S.: Rectenna solar energy harvester. US Patent 8 115 683, B1, 2012.
Andersen J.B. and Frandsen A.: Absorption efficiency of receiving antennas. IEEE Trans. Antennas Propag. 53 (9), 2843–2849 (2005).
Giovine E., Casini R., Dominijanni D., Notargiacomo A., Ortolani M., and Foglietti V.: Fabrication of Schottky diodes for terahertz imaging. Microelectron. Eng. 88, 2544–2546 (2011).
Landsberg P.T. and Tonge G.: Thermodynamics of the conversion of diluted radiation. J. Phys. A: Math. Gen. 12 (4), 551–561 (1979).
Sanchez A., Davis C.F. Jr., Liu K.C., and Javan A.: The MOM tunneling diode: Theoretical estimate of its performance at microwave and infra frequencies. J. Appl. Phys. 49, 5270–5277 (1978).
Brillouin L.: Can the rectifier become a thermo-dynamical demon? Phys. Rev. 78, 627 (1950).
Fumeaux C., Herrmann W., Kneubühl F.K., and Rothuizen H.: Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30THz radiation. Infrared Phys. Technol. 39, 123–183 (1998).
Fumeaux C., Alda J., and Boreman G.D.: Lithographic antennas at visible frequencies. Opt. Lett. 24, 1629 (1999).
González F.J. and Boreman G.D.: Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Infrared Phys. Technol. 46, 418–428 (2005).
Krishnan S., La Rosa H., Stefanakos E., Bhansali S., and Buckle K.: Design and development of batch fabricatable metal-insulator-metal diode and microstrip slot antenna as rectenna elements. Sens. Actuators, A 142, 40–47 (2008).
Ren Y.-J. and Chang K.: New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission. IEEE Trans. Microwave Theory Tech. 54, 2970–2976 (2006).
Feynman R.P.: There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).
Muhlschlegel P.: Resonant optical antennas. Science 308, 1607–1609 (2005).
Hecht B., Muhlschlegel P., Farahani J., Eisler H.-J., and Pohl D.W.: Chapter 9–Resonant optical antennas and single emitters. In Tip Enhancement, Elsevier: Amsterdam, 2007, pp. 275–307.
Biagioni P., Huang J.-S., and Hecht B.: Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012).
Jackson J.D.: Classical Electrodynamics, 3rd ed.; John Wiley & Sons: New York, 1998.
Maier S.A.: Plasmonics: Fundamentals and Applications, Springer: New York, 2007.
Kreibig U. and Vollmer M.: Optical Properties of Metal Clusters, Springer: New York, 1995.
Rakic A., Djurišic A., Elazar J.M., and Majewski M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998).
Bohren C.F. and Huffman D.R.: Absorption and Scattering of Light by Small Particles, Wiley: New York, 2008.
Draine B.T. and Flatau P.J.: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. 11, 1491 (1994).
Khoury C., Norton S.J., and Vo-Dinh T.: Plasmonics of 3-D nanoshell dimmers using multipole expansion and finite element method. ACS Nano 3 (9), 2776–2788 (2009).
Oskooi A., Roundy D., Ibanescu M., Bermel P., Joannopoulos J.D., and Johnson S.G.: Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010).
Centeno A., Alford N., and Xie F.: Predicting the fluorescent enhancement rate by gold and silver nanospheres using finite-difference time-domain analysis. IET Nanobiotechnol. 7, 50–58 (2010).
Centeno A., Ahmed B., Reehal H., and Xie F.: Diffuse scattering from hemispherical nanoparticles at the air-silicon interface. Nanotechnology 24, 415402 (2013).
Centeno A., Xie F., Breeze J., and Alford N.: Calculations of scattering and absorption efficiencies of noble metal nanoparticles. In Applied Electromagnetics Conference (AEMC), IEEE, 2011, pp. 1–4.
Fang Z., Liu Z., Wang Y., Ajayan P., Nordlander P., and Halas N.J.: Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012).
Goykhman I., Desiatov B., Khurgin J., Shappir J., and Levy U.: Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11, 2219–2224 (2011).
Mukherjee S., Libisch F., Large N., Neumann O., Brown L., Cheng J., Lassiter J., Carter E., Nordlander P., and Halas N.J.: Hot electrons do the impossible: Plasmon-induced dissociation of H 2 on Au. Nano Lett. 13, 240–247 (2013).
Wang F. and Melosh N.A.: Plasmonic energy collection through hot carrier extraction. Nano Lett. 11, 5426–5430 (2011).
Xie F., Pang J., Centeno A., Ryan M., Riley D.J., and Alford N.M.: Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res. 6, 496–510 (2013).
Bonakdar A., Kohoutek J., Dey D., and Mohseni H.: Optomechanical nanoantenna. Opt. Lett. 37, 3258 (2012).
Grover S., Dmitriyeva O., Estes M.J., and Moddel G.: Travelling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans. Nanotech. 9 (6), 716–722 (2010).
Hobbs P.C.D., Laibowitz R.B., and Libsch F.R.: Ni–NiO–Ni tunnel junction for terahertz and infrared detection. Appl. Opt. 44 (32), 6813–6822 (2005).
Kinzel E., Brown R., Ginn J., Lail B., Slovick B.A., and Boreman G.D.: Design of an MOM diode-coupled frequency-selective surface. Microwave Opt. Technol. Lett. 55, 489–493 (2013).
Reed J., Zhu H., Zhu A., Li C., and Cubukcu E.: Graphene-enabled silver nanoantenna sensors. Nano Lett. 12, 4090–4094 (2012).
Fang Z., Thongrattanasiri S., Schlather A., Liu Z., Ma L., Wang Y., Ajayan P., Nordlander P., Halas N.J., and de Abajo F.J.G.: Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388–2395 (2013).
Greffet J.-J., Laroche M., and Marquier F.: Impedance of a nanoantenna and a single quantum emitter. Phys. Rev. Lett. 105, 117701 (2010).
Liu N., Wen F., Zhao Y., Wang Y., Nordlander P., Halas N.J., and Alù A.: Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett. 13, 142–147 (2013).
Guo L.J.: Nanoimprint lithography methods, and material requirements. Adv. Mater. 19, 495–513 (2007).
Bergmair I., Dastmalchi B., Bergmair M., Saeed A., Hilber W., Hesser G., Helgert C., Pshenay-Severin E., Pertsch T., Kley E., Hübner U., Shen N., Penciu R., Kafesaki M., Soukoulis C., Hingerl K., Muehlberger M., and Schoeftner R.: Single and multilayer metamaterials fabricated by nanoimprint lithography. Nanotechnology 22, 325301 (2011).
Xie F., Centeno A., Ryan M., Riley D.J., and Alford N.M.: Au nanostructures by colloidal lithography: From quenching to extensive fluorescence enhancement. J. Mater. Chem. B 1, 536 (2012).
Haynes C.L. and Duyne R.P.V.: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001).
Liu X., Choi B., Gozubenli N., and Jiang P.: Periodic arrays of metal nanorings and nanocrescents fabricated by a scalable colloidal templating approach. J. Colloid Interface Sci. 409, 52–58 (2013).
Hsu C.-M., Connor S., Tang M.X., and Cui Y.: Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Appl. Phys. Lett. 93, 133109 (2008).
Zhang X., Elek J., and Chang C.-H.: Three-dimensional nanolithography using light scattering from colloidal particles. ACS Nano 7, 6212–6218 (2013).
Bharadwaj P., Deutsch B., and Novotny L.: Optical antennas. Adv. Opt. Photonics 1, 438 (2009).
Jennings D., Petersen F.R., and Evenson K.M.: Extension of absolute frequency measurements to 148 THz: Frequencies of 2.0- and 3.5 μ m Xe laser. Appl. Phys. Lett. 26, 510–511 (1975).
Periasamy P., Berry J., Dameron A., Bergeson J., Ginley D., O’Hayre R.P., and Parilla P.A.: Fabrication and characterisation of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater. 23, 3080–3085 (2011).
Periasamy P., Guthrey H., Abdulagatov A., Ndione P., Berry J., Ginley D., George S., Parilla P.A., and O’Hayre R.P.: Metal-insulatormetal diodes: Role of the insulator layer on the rectification performance. Adv. Mater. 25, 1301–1308 (2013).
Chin M., Periasamy P., O’Regan T., Amani M., Tan C., O’Hayre R., Berry J., Osgood R., Parilla P., Ginley D.S., and Dubey M.: Planar metal-insulator-metal diodes based on the Nb/Nb2O5/X material system. J. Vac. Sci. Technol., B 31 (5), 051204 (2013).
Tucker J.R. and Feldman M.J.: Quantum detection at mm wavelengths. Rev. Mod. Phys. 57 (4), 1055–1114 (1985).
Tung R.T.: Recent advances in Schottky barrier concepts. Mater. Sci. Eng., R 35, 1–138 (2001).
Pierret R.F.: Semiconductor Device Fundamentals; Addison-Wesley Publishing Company, Inc., 1996.
Sze S.M.: Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons Inc.: New York, 2007.
Schroder D.K.: Semiconductor Material, and Device Characterization, 3rd ed.; John Wiley & Sons, Inc.: New York, 2006.
Tung R.T.: Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B 45, 13509–13523 (1992).
Gammon P., Donchev E., Pérez-Tomás A., Shah V., Pang J., Petrov P., Jennings M., Fisher C., Mawby P., Leadley D.R., and Alford N.McN.: A study of temperature-related non-linearity at the metal-silicon interface. J. Appl. Phys. 112, 114513 (2012).
Roccaforte F., La Via F., Raineri V., Pierobon R., and Zanoni E.: Extracting the Richardson constant: IrOx/n-ZnO Schottky diodes. J. Appl. Phys. 93, 9137 (2003).
Gammon P., Pérez-Tomás A., Shah V., Roberts G., Jennings M., Covington J.A., and Mawby P.A.: Analysis of inhomogeneous Ge/SiC heterojunction diodes. J. Appl. Phys. 106, 093708 (2009).
Gammon P., Pérez-Tomás A., Jennings M., Shah V., Boden S., Davis M., Burrows S., Wilson N., Roberts G., Covington J.A., and Mowby P.A.: Interface characteristics of n–n and p–n Ge/SiC heterojunction diodes formed by molecular beam epitaxy deposition. J. Appl. Phys. 107, 124512 (2010).
Gammon P., Pérez-Tomás A., Shah V., Vavasour O., Donchev E., Pang J., Myronov M., Fisher C., Jennings M., Leadley D.R., and Mawby P.A.: Modelling the inhomogeneous SiC Schottky interface. J. Appl. Phys. 114, 223704 (2013).
Strohm K., Buechler J., and Kasper E.: SIMMWIC rectennas on high-resistivity silicon and CMOS compatibility. IEEE Trans. Microwave Theory Tech. 46 (5), 669–676 (1998).
Sankaran S. and O K.K.: Schottky diode with cutoff frequency of 400 GHz fabricated in 0.18 μ m CMOS. Electron. Lett. 41 (8), 506–508 (2005).
Sizov F. and Rogalski A.: THz detectors. Prog. Quantum Electron. 34, 278–347 (2010).
Giugni A., Torre B., Toma A., Francardi M., Malerba M., Alabastri A., Proietti Zaccaria R., Stockman M.I., and Di Fabrizio E.: Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 8, 845–852 (2013).
Eliasson B.: Metal-insulator-metal Diodes for Solar Energy Conversion, PhD Thesis at University of Colorado, Boulder, 2001.
Sullivan T., Kuk Y., and Cutler P.H.: Proposed planar scanning tunneling microscope diode: Application as an infrared and optical detector. IEEE Trans. Electron Devices 36 (11), 2659–2664 (1989).
Grover S., Joshi S., and Moddel G.: Quantum theory of operation for rectenna solar cells. J. Phys. D: Appl. Phys. 46, 135106 (2013).
Alimardani N., McGlone J., Wager J.F., and Conley J.F. Jr: Conduction processes in metal-insulator-metal diodes with Ta2O5 and Nb2OP5 insulators deposited by atomic layer deposition. J. Vac. Sci. Technol., A 32 (1), 01A122 (2014).
Fowler R.H. and Nordheim L.: Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928).
Grover S. and Moddel G.: Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J. Photovolt. 1 (1), 78–83 (2011).
Kadlec J. and Gundlach K.H.: Dependence of the barrier height on insulator thickness in Al-(Al-Oxide)-Al sandwiches. Solid State Commun. 16, 621–623 (1975).
Heiblum M., Wang S., Whinnery J.R., and Gustafson T.K.: Characteristics of integrated MOM junctions at dc and at optical frequencies. IEEE J. Quantum Electron. QE-14 (3), 159–169 (1978).
Wilke I., Oppliger Y., Herrmann W., and Kneubühl F.K.: Nanometer thin-film Ni-NiO–Ni diodes for 30 THz radiation. Appl. Phys. A 58, 329–341 (1994).
Abdel-Rahman M., González F.J., and Boreman G.D.: Antenna-coupled metal-oxide-metal diodes for dual-band detection at 92.5 GHz and 28 THz. Electron. Lett. 40 (2), (2004).
Choi K., Yesilkoy F., Ryu G., Cho S., Goldsman N., Dagenais M., and Peckerar M.: A focused asymmetric metal-insulator-metal tunneling diode: Fabrication, DC characteristics and RF rectification analysis. IEEE Trans. Electron Devices 58 (10), 3519–3528 (2010).
Gloos K., Koppinen P.J., and Pekola J.P.: Properties of native ultrathin aluminium oxide tunnel barriers. J. Phys.: Condens. Matter 15, 1733–1746 (2003).
Periasamy P., Bergeson J., Parilla P., Ginley D.S., and O’Hayre R.P.: Metal-insulator-metal point-contact diodes as a rectifier for rectenna. PVSC 25, 2943–2945 (2010).
Hoofring A., Kapoor V.J., and Krawczonek W.: Submicron nickel-oxide-gold tunnel diode detectors for rectennas. J. Appl. Phys. 66(1), 430–437 (1989).
Krishnan S., Stefanakos E., and Bhansali S.: Effects of dielectric thickness and contact area on current-voltage characteristics of thin film metalinsulator- metal diodes. Thin Solid Films 516, 2244–2250 (2008).
Esfandiari P., Bernstein G., Fay P., Porod W., Rakos B., Zarandy A., Berland B., Boloni L., Boreman G., Lail B., Monacelli B., and Weeks A.: Tunable antenna-coupled metaloxidemetal (MOM) uncooled IR detector (invited paper). Proc. SPIE 5783, 470482 (2005).
Gustafson T., Schmidt R.V., and Perucca J.R.: Optical detection in thin-film metal-oxide-metal diodes. Appl. Phys. Lett. 24 (12), 620–622 (1974).
Periasamy P., O’Hayre R., Berry J., Parilla P., Ginley D.S., and Packard C.E.: A novel way to characterize metal-insulator-metal devices via nanoindentation. PVSC 37 (2011). Retrieved from: http://www.nrel.gov/docs/fy11osti/50727.pdf.
Cowell E.W. III, Alimardani N., Knutson C., Conley J.F. Jr., Keszler D., Gibbons B.J., and Wager J.F.: Advancing MIM electronics: Amorphous metal electrodes. Adv. Mater. 23, 74–78 (2011).
Grossman E., Harvey T.E., and Reintsema C.D.: Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes. J. Appl. Phys. 91 (12), 10134–10139 (2002).
Alimardani N., Cowell E.W. III, Conley J.F. Jr., Evans D., Chin M., Kilpatrick S.J., and Dubey M.: Impact of electrode roughness on metal-insulator-metal tunnel diodes with atomic layer deposited Al2O3 tunnel barriers. J. Vac. Sci. Technol., A 30 (1), 01A113 (2012).
Tiwari B., Bean J., Szakmány G., Bernstein G., Fay P., and Porod W.: Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technol., B 27 (5), 2153–2160 (2009).
Periasamy P., Bradley M., Parilla P., Berry J., Ginley D., O’Hayre R.P., and Packard C.E.: Electromechanical tuning of nanoscale MIM diodes by nanoindentation. J. Mater. Res. 28 (14), 1912–1919 (2013).
Simmons J.G.: Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 2581–2590 (1963).
Hashem I., Rafat N.H., and Soliman E.A.: Theoretical study of metal-insulator-metal tunneling diode figures of merit. IEEE J. Quantum Electron. 49 (1), 72–79 (2013).
Choi K., Yesilkoy F., Chryssis A., Dagenais M., and Peckerar M.: New process development for planar-type CIC tunneling diodes. IEEE Electron Device Lett. 31 (8), 809–811 (2010).
Cowell E.W. III, Muir S., Keszler D.A., and Wager J.F.: Barrier height estimation of asymmetric metal-insulator-metal tunneling diodes. J. Appl. Phys. 114, 213703 (2013).
McMitchell S.R.C., Tse Y., Bouyanfif H., Jackson T., Jones I.P., and Lancaster M.J.: Two-dimensional growth of SrTiO 3 thin films on (001) MgO substrates using pulsed laser deposition and reflection high energy electron diffraction. Appl. Phys. Lett. 95, 174102 (2009).
Palgrave R., Borisov P., Dyer M., McMitchell S.R.C., Darling G., Claridge J., Batuk M., Tan H., Tian H., Verbeeck J., Handermann J., and Rosseinsky M.J.: Artificial construction of the layered Ruddlesden-Popper manganite La 2 Sr2Mn3O10 by reflection high energy electron diffraction monitored pulsed laser deposition. J. Am. Chem. Soc. 134, 7700–7714 (2012).
Gupta R. and Willis B.G.: Nanometer spaced electrodes using selective area atomic layer deposition. Appl. Phys. Lett. 90, 253102 (2007).
Bareib M., Ante F., Kälblein D., Jegert G., Jirauschek C., Scarpa G., Fabel B., Nelson E., Timp G., Zschieschang U., Klauk H., Porod W., and Lugli P.: High-yield printing of metal-insulator-metal nanodiodes. ACS Nano 6 (2), 2853–2859 (2012).
Moddel G. and Eliasson B.J.: High speed electron tunneling device and applications. US Patent No. 6756649B2, 2004.
Grover S. and Moddel G.: Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator barriers. Solid-State Electron. 67, 94–99 (2012).
Di Ventra M., Papp G., Coluzza C., Baldereschi A., and Schulz P.A.: Indented barrier resonant tunneling rectifiers. J. Appl. Phys. 80, 4174–4176 (1996).
Eliasson B.J. and Moddel G.: Metal-oxide electron tunneling device for solar energy conversion. US Patent 6534784B2, 2003.
Hegyi B., Csurgay A., and Porod W.: Investigation of the nonlinearity properties of the DC I-V characteristics of metal-insulator-metal (MIM) tunnel diodes with double-layer insulators. J. Comput. Electron. 6, 159–162 (2007).
Maraghechi P., Foroughi-Abari A., Cadien K., and Elezzabi A.Y.: Enhanced rectifying response from metal-insulator-insulator-metal junctions. Appl. Phys. Lett. 99, 253503 (2011).
Alimardani N., Cowell E., Wager J.F., and Conley, J.F., Jr.: Fabrication and investigation of metal-insulator-insulator-metal (MIIM) tunnel diodes using atomic layer deposition. In 221st ECS Meeting, 2012.
Alimardani N.: Investigation of metal-insulator-metal (MIM) and nanolaminate barrier MIIM tunnel devices fabricated via atomic layer deposition, Ph.D. Thesis, Oregon State University, 2013.
Alimardani N. and Conley J., Jr.: Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes. Appl. Phys. Lett. 102, 143501 (2013).
Sekar D., Kumar T., Rabkin P., and Costa X.C.: MIIIM diode having Lanthanum oxide. US Patent 2013/0181181, 2013.
Moddel G.: Geometric diode, applications, and method. US Patent 20110017284_A1, 2011.
Zhu Z., Joshi S., Grover S., and Moddel G.: Graphene geometric diodes for terahertz rectennas. J. Phys. D: Appl. Phys. 46, 185101 (2013).
Zhu Z., Grover S., Krueger K., and Moddel G.: Optical rectenna solar cells using grapheme geometric diodes. PVSC 37, 2120–2122 (2011).
Joshi S., Zhu Z., Grover S., and Moddel G.: Infrared optical response of geometric diode rectenna solar cells. PVSC 38, 2976–2978 (2012).
Moddel G., Zhu Z., Grover S., and Joshi S.: Ultrahigh speed graphene diode with reversible polarity. Solid State Commun. 152, 1842–1845 (2012).
Grover S.: Diodes for optical rectennas, PhD Thesis at University of Colorado, Boulder, 2011.
Ashcroft N.M. and Mermin N.D.: Solid State Physics; Harcourt College Publishers: Orlando, 1976.
Castro Neto A., Guinea F., Peres N.M.R., Novoselov K.S., and Geim A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Fukuda M., Aihara T., Yamaguchi K., Ling Y., Miyaji K., and Tohyama M.: Light detection enhanced by surface plasmon resonance in metal film. Appl. Phys. Lett. 96, 153107 (2010).
Ishi T., Fujikata J., Makita K., Baba T., and K. Ohashi: Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys. 44 (2), L364–L366 (2005).
Satoh H. and Inokawa H.: Surface plasmon antenna with gold line and space grating for enhanced visible light detection by a silicon-on-insulator metal-oxide-semiconductor photodiode. IEEE Trans. Nanotechnol. 11 (2), 346–351 (2012).
Bareib M., Tiwari B., Hochmeister A., Jegert G., Zschieschang U., Klauk H., Fabel B., Scarpa G., Koblmüller G., Bernstein G., Porod W., and Lugli P.: Nano antenna array for terahertz detection. IEEE Trans. Microwave Theory Trans. 59 (10), 2751–2757 (2011).
Codreanu I., González F.J., and Boreman G.D.: Detection mechanisms in microstrip dipole antenna-coupled infrared detectors. Infrared Phys. Technol. 44, 155–163 (2003).
Enderra I., Gonzalo R., Martinez B., Alderman B.E.J., Huggard P., Murk A., Marchand L., and de Maagt P.: Design and test of a 0.5 THz dipole antenna with integrated Schottky diode detector on a high dielectric constant ceramic electromagnetic bandgap substrate. IEEE Trans. Terahertz Sci. Technol. 3 (3), 584–593 (2013).
Clavero C.: Plasmon-induced hot-electron generation at nanoparticle/ metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95–103 (2014).
The World Bank (2013). Energy - The Facts. Retrieved from: http://go.worldbank.org/6ITD8WA1A0.
Fraunhofer ISE (Press Release 23 Sep. 2013): World Record Solar Cell with 44.7% Efficiency. Retrieved from: http://www.ise.fraunhofer. de/en/press-and-media/press-releases/presseinformationen-2013/ world-record-solar-cell-with-44.7-efficiency.
Acknowledgments
This work was supported in part by EPSRC grant number EP/G060940/1. Peter M. Gammon would like to gratefully acknowledge the financial support from the Royal Academy of Engineering. Jing S. Pang and Peter K. Petrov acknowledge the financial support under the King Abdullah University for Science and Technology (KAUST), Global Collaborative Research Academic Excellence Alliance (AEA), and Academic Partnership Programs (APP).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Donchev, E., Pang, J.S., Gammon, P.M. et al. The rectenna device: From theory to practice (a review). MRS Energy & Sustainability 1, 1 (2014). https://doi.org/10.1557/mre.2014.6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1557/mre.2014.6