Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Enhancing the performance of downlink NOMA relaying networks by RF energy harvesting and data buffering at relay

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Recently, non-orthogonal multiple access (NOMA) and energy harvesting (EH) from radio frequency (RF) have been considered as promising candidates for next-generation mobile communications. In this paper, we investigate a novel solution to enhance the reliability and the supply stability of a downlink NOMA relaying networks, in which we integrate two techniques: (i) simultaneous wireless information and power transfer, i.e. the relay node can harvest the energy from source signals and use this energy to help forward information from source node to two user nodes; and (ii) data buffer aid at relay node, i.e. the data packets received from the source can be stored in a buffer and then be re-transmitted to the destination nodes only when the channel condition is good. The performance of the proposed system is analyzed rigorously to derive the system outage probability (OP), throughput and the average packet delay. Furthermore, a power allocation optimization problem to minimize the OP is formulated and solution to this problem is also provided. In addition, the optimal transmission rates to maximize the throughput of each user are presented in numerical results. Monte Carlo simulations are conducted to verify the analytical results, which confirms that with data buffer at relay, the overall outage probability (OOP) can be reduced significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

There is no other data and material rather than the one presented in this paper.

Code availability

Not applicable.

Notes

  1. This model can employ two antennas for the relay node and operate in a full-duplex mode.

  2. The analytical approach in this paper can be applied to the power-splitting EH model [30] as well.

  3. However, source or relay only sends signal if the data buffer is in some proper states, as described later.

  4. At this moment, EH-RF should be developed only for sensor networks, health care and medical systems such as wireless body networks with short communication distance.

  5. The storing of harvested energy in TS scheme is refered as charging-then-communicate. In contrast, PS scheme is refered as charging-and-communicate.

  6. One packet consist of the decoded messages for \(x_1\) and \(x_2\).

  7. The order of SIC decoding merely depends on the order of SNR or equivalently, the magnitude of the channel gains, at \({\mathrm{D}}_1\) and \({\mathrm{D}}_2\).

  8. Moreover, if the relay knows the channel gains \(g_1\) and \(g_2\) and the total power factor \(a_1 + a_2\) is equal to one, we can allocate power for \({\mathrm{D}}_1\) and \({\mathrm{D}}_2\) by adapting to channel gains, i.e. \(a_1 = |g_2|^2/( |g_1|^2+|g_2|^2 )\), to ensure the fairness in outage performance.

References

  1. Xu, Y., Cheng, J., Wang, G., & Leung, V. C. (2021). Coordinated direct and relay transmission for multiuser networks: NOMA or hybrid multiple access? IEEE Wireless Communications Letters. https://doi.org/10.1109/LWC.2021.3052894.

    Article  Google Scholar 

  2. Vaezi, M., Schober, R., Ding, Z., & Poor, H. V. (2019). Non-orthogonal multiple access: Common myths and critical questions. IEEE Wireless Communications, 26(5), 174–180.

    Article  Google Scholar 

  3. Li, G., Mishra, D., Hu, Y., & Atapattu, S. (2020). Optimal designs for relay-assisted NOMA networks with hybrid SWIPT scheme. IEEE Transactions on Communications, 68(6), 3588–3601.

    Article  Google Scholar 

  4. Kader, M. F., Shahab, M. B., & Shin, S. Y. (2017). Exploiting non-orthogonal multiple access in cooperative relay sharing. IEEE Communications Letters, 21(5), 1159–1162.

    Article  Google Scholar 

  5. Hoang, T. M., Nguyen, B. C., Kim, T., et al. (2020). Outage performance of multi-antenna mobile UAV-assisted NOMA relay systems over Nakagami-m fading channels. IEEE Access, 8, 215033–215043.

    Article  Google Scholar 

  6. Hoang, T. M., Nguyen, B. C., Tran, X. N., et al. (2020). Outage probability and ergodic capacity of user clustering and beamforming MIMO-NOMA relay system with imperfect CSI over Nakagami-\(m\) fading channels. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.3009700.

    Article  Google Scholar 

  7. Lin, C. H., & Liu, K. H. (2021). Relay selection for energy-harvesting relays with finite data buffer and energy storage. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3053290.

    Article  Google Scholar 

  8. Yu, H., & Chin, K. W. (2021). Data collection in radio frequency (RF) charging internet of things networks. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2021.3059279.

    Article  Google Scholar 

  9. Al Qahtani, D., Chen, Y., Feng, W., & Alouini, M. S. (2021). A new non-linear joint model for RF energy harvesters in wireless networks. IEEE Transactions on Green Communications and Networking. https://doi.org/10.1109/TGCN.2021.3059728.

    Article  Google Scholar 

  10. Sacarelo, G., & Kim, Y. H. (2021). Rate-energy tradeoffs of wireless powered backscatter communication with power splitting and time switching. IEEE Access, 9, 10844–10857.

    Article  Google Scholar 

  11. Hentati, A., Jaafar, W., Frigon, J. F., & Ajib, W. (2020). Analysis of the inter-delivery time in IoT energy harvesting wireless sensor networks. IEEE Internet of Things Journal, 8, 4920–4930.

    Article  Google Scholar 

  12. Nomikos, N., Charalambous, T., Vouyioukas, D., & Karagiannidis, G. K. (2021). When buffer-aided relaying meets full duplex and NOMA. IEEE Wireless Communications, 28(1), 68–73.

    Article  Google Scholar 

  13. Agarwal, A., Jagannatham, A. K., & Hanzo, L. (2020). Finite blocklength non-orthogonal cooperative communication relying on SWIPT-enabled energy harvesting relays. IEEE Transactions on Communications, 68(6), 3326–3341.

    Article  Google Scholar 

  14. de Carvalho, J. A., da Costa, D. B., Yang, L., Alexandropoulos, G. C., Oliveira, R., & Dias, U. S. (2020). User fairness in wireless powered communication networks with non-orthogonal multiple access. IEEE Communications Letters, 10(1), 189–193.

    Article  Google Scholar 

  15. Reshma, K., & Babu, A. (2020). Throughput analysis of energy harvesting enabled incremental relaying NOMA system. IEEE Communications Letters, 24(7), 1419–1423.

    Article  Google Scholar 

  16. Tang, K., & Liao, S. (2020). Outage analysis of relay-assisted NOMA in cooperative cognitive radio networks with SWIPT. Information. https://doi.org/10.3390/info11110500.

    Article  Google Scholar 

  17. Zhou, N., Hu, J., & Hou, J. (2021). Research on energy efficiency of NOMA-SWIPT cooperative relay network using GS-Dinkelbach algorithm. Sensors. https://doi.org/10.3390/s21175720.

    Article  Google Scholar 

  18. Do, N. T., Da Costa, D. B., Duong, T. Q., & An, B. (2017). A BNBF user selection scheme for NOMA-based cooperative relaying systems with SWIPT. IEEE Communications Letters, 21(3), 664–667. https://doi.org/10.1109/LCOMM.2016.2631606

    Article  Google Scholar 

  19. Song, D., Shin, W., Lee, J., & Poor, H. V. (2021). Sum-throughput maximization in NOMA-based WPCN: A cluster-specific beamforming approach. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3049956.

    Article  Google Scholar 

  20. Bapatla, D., & Prakriya, S. (2019). Performance of a cooperative network with an energy buffer-aided relay. IEEE Transactions on Green Communications and Networking, 3(3), 774–788.

    Article  Google Scholar 

  21. Nomikos, N., Charalambous, T., Vouyioukas, D., Karagiannidis, G. K., & Wichman, R. (2019). Hybrid NOMA/OMA with buffer-aided relay selection in cooperative networks. IEEE Journal of Selected Topics in Signal Processing, 13(3), 524–537.

    Article  Google Scholar 

  22. Luo, S., & Teh, K. C. (2017). Adaptive transmission for cooperative NOMA system with buffer-aided relaying. IEEE Communications Letters, 21(4), 937–940.

    Article  Google Scholar 

  23. Manoj, B., Mallik, R. K., & Bhatnagar, M. R. (2018). Performance analysis of buffer-aided priority-based max-link relay selection in DF cooperative networks. IEEE Transactions on Communications, 66(7), 2826–2839.

    Article  Google Scholar 

  24. Xu, P., Quan, J., Yang, Z., Chen, G., & Ding, Z. (2019). Performance analysis of buffer-aided hybrid NOMA/OMA in cooperative uplink system. IEEE Access, 7, 168759–168773.

    Article  Google Scholar 

  25. Tran, X. N., Hoang, T. M., Ba Cao, N., & Dung, L. T. (2019). Outage performance of the downlink NOMA relay networks with RF energy harvesting and buffer aided relay. In T. Q. Duong & N. S. Vo (Eds.), Industrial networks and intelligent systems (pp. 164–177). Springer.

    Chapter  Google Scholar 

  26. Lan, X., Zhang, Y., Chen, Q., & Cai, L. (2020). Energy efficient buffer-aided transmission scheme in wireless powered cooperative NOMA relay network. IEEE Transactions on Communications, 68(3), 1432–1447. https://doi.org/10.1109/TCOMM.2019.2959336.

    Article  Google Scholar 

  27. Zwillinger, D. (2014). Table of integrals, series, and products. Elsevier.

    Google Scholar 

  28. Zhang, Q., Liang, Z., Li, Q., & Qin, J. (2017). Buffer-aided non-orthogonal multiple access relaying systems in Rayleigh fading channels. IEEE Transactions on Communications, 65(1), 95–106.

    Google Scholar 

  29. Luo, S., Yang, G., & Teh, K. C. (2016). Throughput of wireless-powered relaying systems with buffer-aided hybrid relay. IEEE Transactions on Communications, 15(7), 4790–4801.

    Google Scholar 

  30. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  31. Tran, H. M., Tran, N. X., Nguyen, B. C., & Le, D. T. (2020). On the performance of MIMO full-duplex relaying system with SWIPT under outdated CSI. IEEE Transactions on Vehicular Technology, 69(12), 115580–15593.

    Google Scholar 

  32. Hoang, T. M., Tran, X. N., Thanh, N., et al. (2019). Performance analysis of MIMO SWIPT relay network with imperfect CSI. Mobile Networks and Applications, 24(2), 630–642.

    Article  Google Scholar 

  33. Tran, H. M., Nguyen, C. B., Tran, P. T., & Le, D. T. (2020). Outage analysis of RF energy harvesting cooperative communication systems over Nakagami-m fading channels with integer and non-integer \(m\). IEEE Transactions on Vehicular Technology, 69(3), 2785–2801.

    Article  Google Scholar 

  34. Pedersen, K. I., Kolding, T. E., Seskar, I., & Holtzman, J. M. (1996). Practical implementation of successive interference cancellation in DS/CDMA systems. In Universal personal communications, 1996. Record., 1996 5th IEEE international conference (vol. 1, pp. 321–325). IEEE.

  35. Choi, J. (2018). Throughput analysis for multiuser diversity of two users with SIC in NOMA systems. 2018 international conference on signals and systems (ICSigSys) (pp. 120–124). IEEE.

    Chapter  Google Scholar 

  36. Choi, J. (2017). Joint rate and power allocation for NOMA with statistical CSI. IEEE Transactions on Communications, 65(10), 4519–4528.

    Google Scholar 

  37. Little, J. D., & Graves, S. C. (2008). Little’s law. Building intuition. International series in operations research and management science (Vol. 115, pp. 81–100). Springer.

    Chapter  Google Scholar 

  38. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

    Book  Google Scholar 

  39. Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.

    Article  Google Scholar 

  40. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes. Tata McGraw-Hill Education.

    Google Scholar 

  41. Wang, T., Cano, A., Giannakis, G. B., & Laneman, J. N. (2007). High-performance cooperative demodulation with decode-and-forward relays. IEEE Transactions on Communications, 55(7), 1427–1438.

    Article  Google Scholar 

Download references

Funding

There is no funding available for this work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TMH, NNT, methodology: TMH, BCN; formal analysis and investigation: TMH, NNT; writing—original draft preparation: BCN; simulation: BCN, writing—review and editing: PTT; resources: PTT; supervision: PTT.

Corresponding author

Correspondence to Phuong T. Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The goal of this appendix is to derive the OOP of the SWIPT-NOMA system over Rayleigh fading channels. The overall OP of the system can be expressed as

$$\begin{aligned} \mathrm{OOP} =&\underbrace{\Pr \left( \gamma _{\mathrm{R}} \le \gamma _{\mathrm{th}} \right) }_{{\mathrm{OP}_1}}\nonumber \\&+ \underbrace{\Pr \left( \gamma _{\mathrm{R}} > \gamma _{\mathrm{th}},\,\max \left( \gamma _{\mathrm{D_1}}^{x_1},\,\gamma _{\mathrm{D_2}}^{x_2},\,\gamma _{\mathrm{D_1}}^{x_2\rightarrow x_1}\right) \le {\gamma _{\mathrm{th}}} \right) }_{\mathrm{{OP_2}}}. \end{aligned}$$
(47)

From (4), we obtain the closed-form expression of the first term of (47) as

$$\begin{aligned} {{\mathrm{OP}}_1} = \Pr \left( |h_1|^2\le \frac{\gamma _{\mathrm{th}}}{P_{\mathrm{S}}}\right) = 1 - e^{ \frac{-\gamma _{\mathrm{th}}}{\varOmega _1P_{\mathrm{S}}}}. \end{aligned}$$
(48)

To obtain the closed-form expression of the second term of (47), we rewrite the second term of (47) as

$$\begin{aligned} {{\mathrm{OP}}_2} = \Pr \left( \gamma _{\mathrm{R}} > \gamma _{\mathrm{th}},\,\gamma _{{{\mathrm{D}}_1}}^{x_1}\le \gamma _{\mathrm{th}},\gamma _{{{\mathrm{D}}_1}}^{x_2\rightarrow x_1}< \gamma _{\mathrm{th}}\,,\gamma _{\mathrm{D_2}}^{x_2} < \gamma _{\mathrm{th}}\right) . \end{aligned}$$
(49)

From (49) and the condition \(\gamma _{{{\mathrm{D}}_1}}^{x_2\rightarrow x_1} > \gamma _{{{\mathrm{D}}_2}}^{x_2}\), we have:

$$\begin{aligned} {{\mathrm{OP}}_2} = \Pr \left( \gamma _{\mathrm{R}} > \gamma _{\mathrm{th}},\,\gamma _{{{\mathrm{D}}_1}}^{x_1}\le \gamma _{\mathrm{th}},\gamma _{{{\mathrm{D}}_1}}^{x_2\rightarrow x_1} < \gamma _{\mathrm{th}}\right) . \end{aligned}$$
(50)

By substituting (4), (7), and (8) into (50) and denoting \(|h_1|^2 = X\), \(|g_1|^2 = Y\), and \(|g_2|^2 = Z\), we obtain:

$$\begin{aligned} {{\mathrm{OP}}_2} =&\Pr \left( X > \frac{\gamma _{\mathrm{th}}}{P_S},\,XY \le \frac{\gamma _{\mathrm{th}}}{a_1\phi P_{\mathrm{S}}},XY \right. \nonumber \\&\left. < \frac{\gamma _{\mathrm{th}}}{\phi P_{\mathrm{S}}(a_2 - a_1\gamma _{\mathrm{th}})}\right) . \end{aligned}$$
(51)

As seen from (51), the outage always occurs if \(a_1 \ge \frac{1}{1 + \gamma _{\mathrm{th}}}\). Thus, allocating more power to the \({\mathrm{D}}_2\) is required so that \(1-a_1(1+\gamma _{\mathrm{th}})>0\) always holds. The condition \(a_1 < \frac{1}{1 + \gamma _{\mathrm{th}}}\) is used throughout this paper. For simplicity, we can rewrite (51) as

$$\begin{aligned} {{\mathrm{OP}}_2} = \Pr \left( X > \frac{\gamma _{\mathrm{th}}}{P_{\mathrm{S}}},\,XY \le \varPsi _{\min }\right) , \end{aligned}$$
(52)

where \(\varPsi _{\min } = \min \left\{ \frac{\gamma _{\mathrm{th}}}{a_1\phi P_{\mathrm{S}}},\,\frac{\gamma _{\mathrm{th}}}{\phi P_{\mathrm{S}}[ 1 - a_1( 1 + \gamma _{\mathrm{th}})]} \right\}\).

Based on the properties of conditional probability [40] and the assumption that the channel gains have exponential distributions, we have:

$$\begin{aligned} {{\mathrm{OP}}_2}&= \int \nolimits _{\frac{\gamma _{\mathrm{th}}}{P_{\mathrm{S}}}}^\infty { F_Y\left( \frac{\varPsi _{\min }}{x} \right) f_X(x)dx}\nonumber \\&= \int \nolimits _{\frac{\gamma _{\mathrm{th}}}{P_{\mathrm{S}}}}^\infty { \left( 1 - e^{ \frac{\varPsi _{\min }}{\varOmega _2x}}\right) f_X(x)dx}, \end{aligned}$$
(53)

where \(F_Y(y) = 1 - e^{ \frac{-y}{\varOmega _2}}\) and \(f_X(x)= \frac{1}{\varOmega _1}e^{ \frac{-x}{\varOmega _1} }\) are the CDF of X and the PDF of Y, respectively.

Substituting PDF of X into (53) yields

$$\begin{aligned} {{\mathrm{OP}}_2}= e^{\frac{-\gamma _{\mathrm{th}}}{\varOmega _1P_{\mathrm{S}}}} - \frac{1}{\varOmega _1}\int \nolimits _{\frac{\gamma _{\mathrm{th}}}{P_{\mathrm{S}}}}^\infty {e^{\frac{-\varPsi _{\min }}{\varOmega _2x} - \frac{x}{\varOmega _1}} dx}. \end{aligned}$$
(54)

By using the Taylor’s series expansions of the exponential function, doing some algebras on (54), and using [27, 3.351.4], we obtain the second term of (47) as

$$\begin{aligned}&{{\mathrm{OP}}_2} = e^{- \frac{\gamma _{\mathrm{th}}}{\varOmega _1P_{\mathrm{S}}}} - \frac{1}{\varOmega _1}\sum \limits _{k = 0}^\infty \frac{(-1)^k}{k!}\left( \frac{\varPsi _{\min }}{\varOmega _2}\right) ^k\nonumber \\&\quad \times \left[ \frac{(-1)^k}{(k-1)!}{\left( \frac{1}{\varOmega _1}\right) }^{k - 1}\mathrm{Ei}\left( \frac{-\gamma _{\mathrm{th}}}{\varOmega _1P_{\mathrm{S}}}\right) \right. \nonumber \\&\quad \left. + \frac{e^{ \frac{-\gamma _{\mathrm{th}}}{\varOmega _1P_{\mathrm{S}}}}}{\left( \frac{\gamma _{\mathrm{th}}}{P_{\mathrm{S}}}\right) ^{k - 1}}\sum \limits _{j = 0}^{k - 2} \frac{(-1)^j\left( \frac{\gamma _{\mathrm{th}}}{\varOmega _xP_{\mathrm{S}}}\right) ^j}{\prod \nolimits _{\ell = 0}^j {(k-1-\ell )} } \right] . \end{aligned}$$
(55)

We obtain the OP expression of the system by combining (48) and (55). When the transmission power is high, we have \(\gamma _{\mathrm{th}} \ll P_{\mathrm{S}}\). Then, (54) can be approximated as

$$\begin{aligned} {{\mathrm{OP}}_2} = 1 - \frac{1}{\varOmega _1}\int \nolimits _0^\infty { e^{ \frac{-\varPsi _{\min }}{\varOmega _2x} - \frac{x}{\varOmega _1}} dx}. \end{aligned}$$
(56)

From (56), by using [27, 3.324.1], i.e. \(\int \nolimits _0^\infty { e^{ - \frac{\beta }{4x} - \gamma x}dx}~=~\sqrt{\frac{\beta }{\gamma }} {K_1}\left( {\sqrt{\beta \gamma }} \right)\), and after some mathematical manipulations, we have the approximation of (19) at high SNR regime. The proof of Theorem 1 is completed. \(\square\)

Appendix B

Due to the imperfect detection at the relay node, it may forward wrongly decoded signals to \({\mathrm{D}}_1\) and \({\mathrm{D}}_2\) and cannot apply SIC technique on symbol \(x_2\) at \({\mathrm{D}}_1\). Hence, similarly to [41], for any modulation scheme, the dual-hop of the links \({\mathrm{S}}\rightarrow {\mathrm{R}}\rightarrow {\mathrm{D}}_1\) or \({\mathrm{S}}\rightarrow {\mathrm{R}}\rightarrow {\mathrm{D}}_2\) can be modeled as an equivalent one-hop channel whose output SINR \(\mathcal{X}_i\), \(i\in \{1,2\}\), at high SNR regime can be tightly approximated.

Let \({\mathcal{X}_1}\) and \({\mathcal{X}_2}\) denote the SINRs obtained at \({\mathrm{D}}_{1}\) and \({\mathrm{D}}_{2}\), respectively [4].

$$\begin{aligned}&\mathcal{X}_1 = \min \left( \gamma _{\mathrm{R}},\gamma _{{{\mathrm{D}}_1}}^{x_1},\gamma _{{{\mathrm{D}}_1}}^{x_2 \rightarrow x_1}\right) , \end{aligned}$$
(57)
$$\begin{aligned}&\mathcal{X}_2 = \min \left( \gamma _{\mathrm{R}},\gamma _{{{\mathrm{D}}_2}}^{x_2}\right) . \end{aligned}$$
(58)

To find the OP of \({\mathrm{D}}_1\), from (57), we have the OP expression of \({\mathrm{D}}_1\) as

$$\begin{aligned} {{\mathrm{OP}}_{D_1}}&= 1 - \Pr \left( \gamma _{\mathrm{R}}>\xi _1, \gamma _{{{\mathrm{D}}_1}}^{x_1}> \xi _1,\gamma _{{{\mathrm{D}}_1}}^{x_2 \rightarrow x_1}> \xi _1 \right) \nonumber \\&= 1 - \Pr \left( X > \frac{\xi _1}{P_{\mathrm{S}}},XY \ge \mathcal{Q}_{\max } \right) , \end{aligned}$$
(59)

where \(\mathcal{Q}_{\max } = \max \left\{ \frac{\xi _1}{a_1\phi P_{\mathrm{S}}},\frac{\xi _1}{\phi P_{\mathrm{S}}(1 - a_1(1 + \xi _1))} \right\}\).

By using the conditional probability [40], we can rewrite (59) as

$$\begin{aligned} {{\mathrm{OP}}_{D_1}} = 1 - \int \nolimits _{\frac{\xi _1}{P_{\mathrm{S}}}}^\infty \left[ 1 - F_Y\left( \frac{\mathcal{Q}_{\max }}{x} \right) \right] f_X(x)dx. \end{aligned}$$
(60)

Since the CDF and PDF of X and Y are exponential distribution functions, we have:

$$\begin{aligned} {{\mathrm{OP}}_{D_1}} = 1 - \frac{1}{\varOmega _x}\int \nolimits _{\frac{\xi _1}{P_{\mathrm{S}}}}^\infty {e^{ \frac{-\mathcal{Q}_{\max }}{\varOmega _2x}}e^{ \frac{-x}{\varOmega _1}}dx}. \end{aligned}$$
(61)

By using the Taylor series expansions of the exponential function, after some manipulations of (61) using [27, 3.351.4], we obtain the expression of the OP of \({\mathrm{D}}_1\) as presented in (20).

For the case of imperfect SIC, we replace \(\gamma _{\mathrm{D_1}}^{x_1}\) from (9) into (59), then OP are derived similar to (59) to (61). After some manipulations, we have \(\varDelta _{\mathrm{max}} = \max \left\{ \frac{\xi _1}{\phi P_{\mathrm{S}}(a_1-\xi _1\kappa (1-a_2) )},\frac{\xi _1}{\phi P_{\mathrm{S}}(1 - a_1(1 + \xi _1))}\right\},\) and this term is used instead of \(\mathcal{Q}_{\max }\) in (61).

Next, we calculate the OP expression at \({\mathrm{D}}_2\). With the given SINR at \({\mathrm{D}}_2\) and the notation \(\mathcal{X}_2 = \min (\gamma _{\mathrm{R}},\gamma _{D_2}^{x_2})\), we can write:

$$\begin{aligned} {{\mathrm{OP}}_{D_2}}&= \Pr \left( \min (\gamma _{\mathrm{R}} , \gamma _{{{\mathrm{D}}_2}}^{x_2}) \le \xi _2\right) = 1 - \Pr \left( \gamma _{\mathrm{R}}> \xi _2, \gamma _{{{\mathrm{D}}_2}}^{x_2} > \xi _2 \right) . \end{aligned}$$
(62)

Substituting (4) and (6) into (62) yields

$$\begin{aligned} {\mathrm{O}}{{\mathrm{P}}_{{{\mathrm{D}}_{\mathrm{{2}}}}}}&= 1 - \Pr \left( {\frac{{{P_{\mathrm{{S}}}}|{h_1}{|^2}}}{{{N_0}}}> {\xi _2},\frac{{{a_2}{P_{\mathrm{{R}}}}|{g_2}{|^2}}}{{{a_1}{P_{\mathrm{{R}}}}|{g_2}{|^2} + {N_0}}}> {\xi _2}} \right) \nonumber \\&= 1 - \Pr \left( {X> \frac{{{\xi _2}}}{{{P_{\mathrm{{S}}}}}},\,XZ > \frac{{{\xi _2}}}{{\phi {P_{\mathrm{S}}}\left( {{a_2} - {a_1}{\xi _2}} \right) }}} \right) \end{aligned}$$
(63)

Then, by applying similar calculations as in Appendix A we can obtain the OP of \({\mathrm{D}}_2\) as

$$\begin{aligned} {\mathrm{O}}{{\mathrm{P}}_{{{\mathrm{D}}_{\mathrm{{2}}}}}}&= 1 - \int \nolimits _{\frac{{{\xi _2}}}{{{P_{\mathrm{{S}}}}}}}^\infty {\left[ {1 - {F_Z}\left( {\frac{{{\xi _2}}}{{x\phi {P_{\mathrm{S}}}\left( {{a_2} - {a_1}{\xi _2}} \right) }}} \right) } \right] } {f_X}\left( x \right) dx\nonumber \\&= 1 - \frac{1}{{{\varOmega _1}}}\int \nolimits _{\frac{{{\xi _2}}}{{{P_{\mathrm{{S}}}}}}}^\infty {e^{{ \frac{-b}{{x{\varOmega _2}}}} }e^{ { \frac{-x}{{{\varOmega _2}}}} }} dx. \end{aligned}$$
(64)

By using the Taylor’s series expansions of the exponential function \(e^{\frac{-b}{x\varOmega _2}}=\sum \nolimits _{t=0}^{\infty }{\frac{(-1)^t}{t!}\left( \frac{b}{x\varOmega _2}\right) ^t}\) and using [27, 3.351.4], from (64) we can obtain the closed-form expression of the OP of \({\mathrm{D}}_2\) as given in (21) after some mathematical manipulations. The proof of Theorem 2 is completed. \(\square\)

Appendix C

From (6) and (8), the expression of \(\mathcal{O}_{\mathrm{RD}}\) can be expressed as

$$\begin{aligned} \mathcal{O}_{\mathrm{RD}}&=\Pr \left( \max \left( \gamma _{{{\mathrm{D}}_1}}^{x_1}, \gamma _{{{\mathrm{D}}_2}}^{x_2}\right)<\gamma _{\mathrm{th}}\right) \nonumber \\&=\Pr \left( \frac{a_1P_{\mathrm{R}}|g_1|^2}{N_0}<\gamma _{\mathrm{th}},\frac{(1-a_1)P_{\mathrm{R}}|g_2|^2}{a_1P_{\mathrm{R}}|g_2|^2+1}<\gamma _{\mathrm{th}}\right) \nonumber \\&=\Pr \left( XY\!\!\!<\frac{\gamma _{\mathrm{th}}}{a_1\phi P_{\mathrm{S}}}, XZ\!\!<\!\!\frac{\gamma _{\mathrm{th}}}{\phi P_{\mathrm{S}}(1-a_1(1+\gamma _{\mathrm{th}}))}\right) . \end{aligned}$$
(65)

Based on the definition of the conditional probability, we can write:

$$\begin{aligned} \mathcal{O}_{\mathrm{RD}}&=\int \nolimits _0^\infty {\Pr \left( Y<\frac{\mathcal{A}}{x} , Z<\frac{\mathcal{B}}{x}\right) f_{X}(x)dx}\nonumber \\&=\int \nolimits _0^\infty {\int \limits _0^\frac{\mathcal{B}}{x}{\Pr \left( Y<\frac{\mathcal{A}}{x}\right) f_{Z}(z)f_{X}(x)dxdz}}\nonumber \\&=\int \nolimits _0^\infty {\left[ 1-e^{\frac{-\mathcal{A}}{x}}-e^{\frac{-\mathcal{B}}{x}}+e^{-\frac{\mathcal{A}}{x}-\frac{\mathcal{B}}{x}}\right] f_X(x)dx}, \end{aligned}$$
(66)

where \({\mathcal {A}}=\frac{\gamma _{\mathrm{th}}}{a_1\phi P_{\mathrm{S}}}\), \({\mathcal {B}}=\frac{\gamma _{\mathrm{th}}}{\phi P_{\mathrm{S}}(1-a_1(1+\gamma _{\mathrm{th}}))}\). After some manipulations, we get (33), which completes the proof of Theorem 4. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, T.M., Thang, N.N., Nguyen, B.C. et al. Enhancing the performance of downlink NOMA relaying networks by RF energy harvesting and data buffering at relay. Wireless Netw 28, 1857–1877 (2022). https://doi.org/10.1007/s11276-022-02947-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02947-5

Keywords

Navigation