Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Improved prairie dog optimization algorithm by dwarf mongoose optimization algorithm for optimization problems

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, optimization problems have been revised in many domains, and they need powerful search methods to address them. In this paper, a novel hybrid optimization algorithm is proposed to solve various benchmark functions, which is called IPDOA. The proposed method is based on enhancing the search process of the Prairie Dog Optimization Algorithm (PDOA) by using the primary updating mechanism of the Dwarf Mongoose Optimization Algorithm (DMOA). The main aim of the proposed IPDOA is to avoid the main weaknesses of the original methods; these weaknesses are poor convergence ability, the imbalance between the search process, and premature convergence. Experiments are conducted on 23 standard benchmark functions, and the results are compared with similar methods from the literature. The results are recorded in terms of the best, worst, and average fitness function, showing that the proposed method is more vital to deal with various problems than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Soerensen JS, Johannesen L, Grove USL, Lundhus K, Couderc J-P, Graff C (2010) A comparison of iir and wavelet filtering for noise reduction of the ecg. In: 2010 computing in cardiology, IEEE, pp 489–492

  2. Liao Y, Zhao W, Wang L (2021) Improved manta ray foraging optimization for parameters identification of magnetorheological dampers. Mathematics 9(18):2230

    Google Scholar 

  3. Hussien AG, Hassanien AE, Houssein EH, Amin M, Azar AT (2020) New binary whale optimization algorithm for discrete optimization problems. Eng Optim 52(6):945–959

    MathSciNet  Google Scholar 

  4. Hussien AG (2022) An enhanced opposition-based salp swarm algorithm for global optimization and engineering problems. J Ambient Intell Human Comput 13(1):129–150

    Google Scholar 

  5. Hussien AG, Hassanien AE, Houssein EH, Bhattacharyya S, Amin M (2019) S-shaped binary whale optimization algorithm for feature selection. In: Recent trends in signal and image processing, Springer, pp 79–87

  6. Wu G, Pedrycz W, Suganthan PN, Mallipeddi R (2015) A variable reduction strategy for evolutionary algorithms handling equality constraints. Appl Soft Comput 37:774–786

    Google Scholar 

  7. Mostafa RR, Hussien AG, Khan MA, Kadry S, Hashim FA (2022) Enhanced coot optimization algorithm for dimensionality reduction. In: 2022 Fifth international conference of women in data science at prince sultan university (WiDS PSU), IEEE, pp 43–48

  8. Abualigah L, Gandomi AH, Elaziz MA, Hussien AG, Khasawneh AM, Alshinwan M, Houssein EH (2020) Nature-inspired optimization algorithms for text document clustering—a comprehensive analysis. Algorithms 13(12):345

  9. Nadimi-Shahraki MH, Zamani H (2022) Dmde: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimization. Expert Syst Appl 198:116895

    Google Scholar 

  10. Morales-Castaneda B, Zaldivar D, Cuevas E, Rodriguez A, Navarro MA (2021) Population management in metaheuristic algorithms: Could less be more? Appl Soft Comput 107:107389

    Google Scholar 

  11. Lynn N, Suganthan PN (2015) Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol Comput 24:11–24

    Google Scholar 

  12. Hussien AG, Amin M (2022) A self-adaptive harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int J Mach Learn Cyber 13(2):309–336

    Google Scholar 

  13. Fathi H, AlSalman H, Gumaei A, Manhrawy II, Hussien AG, El-Kafrawy P (2021) An efficient cancer classification model using microarray and high-dimensional data. Comput Intell Neurosci

  14. Navarro MA, Ramos-Michel A, Gaspar A, Oliva D, Hinojosa S, Mousavirad SJ, Pérez-Cisneros M (2022) Improving the convergence and diversity in differential evolution through a stock market criterion. In: International conference on the applications of evolutionary computation (Part of EvoStar), Springer, pp 157–172

  15. Hussien AG, Abualigah L, Abu Zitar R, Hashim FA, Amin M, Saber A, Almotairi KH, Gandomi AH (2022) Recent advances in harris hawks optimization: A comparative study and applications. Electronics 11(12):1919

  16. Hussien AG, Oliva D, Houssein EH, Juan AA, Yu X (2020) Binary whale optimization algorithm for dimensionality reduction. Mathematics 8(10):1821

  17. Assiri AS, Hussien AG, Amin M (2020) Ant lion optimization: variants, hybrids, and applications. IEEE Access 8:77746–77764

    Google Scholar 

  18. Singh S, Singh H, Mittal N, Hussien AG , Sroubek F (2022) A feature level image fusion for night-vision context enhancement using arithmetic optimization algorithm based image segmentation. Expert Syst Appl 118272

  19. Hussien AG, Hassanien AE, Houssein EH (2017) Swarming behaviour of salps algorithm for predicting chemical compound activities. In: 2017 eighth international conference on intelligent computing and information systems (ICICIS), IEEE, pp 315–320

  20. Hussien AG, Houssein EH, Hassanien AE (2017) A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In: 2017 Eighth international conference on intelligent computing and information systems (ICICIS), IEEE, pp 166–172

  21. Zamani H, Nadimi-Shahraki MH, Taghian S, Banaie-Dezfouli M (2020) Enhancement of bernstain-search differential evolution algorithm to solve constrained engineering problems. Int J Comput Sci Eng 9:386–396

    Google Scholar 

  22. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, Vol 4. IEEE, pp 1942–1948

  23. Yang X-S, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput & Applic 24(1):169–174

    Google Scholar 

  24. Hussien AG, Heidari AA, Ye X, Liang G, Chen H, Pan Z (2022) Boosting whale optimization with evolution strategy and gaussian random walks: an image segmentation method. Engineering with Computers 1–45

  25. Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805–820

    Google Scholar 

  26. Cuevas E, Cienfuegos M, Zaldívar D, Pérez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384

    Google Scholar 

  27. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Google Scholar 

  28. Hashim FA, Hussien AG (2022) Snake optimizer: A novel meta-heuristic optimization algorithm. Knowl-Based Syst 242:108320

    Google Scholar 

  29. Wang S, Hussien AG, Jia H, Abualigah L, Zheng R (2022) Enhanced remora optimization algorithm for solving constrained engineering optimization problems. Mathematics 10(10):1696

    CAS  Google Scholar 

  30. Zheng R, Hussien AG, Jia H-M, Abualigah L, Wang S, Wu D (2022) An improved wild horse optimizer for solving optimization problems. Mathematics 10(8):1311

    Google Scholar 

  31. Abualigah L, Elaziz MA, Hussien AG, Alsalibi B, Jalali SMJ, Gandomi AH (2021) Lightning search algorithm: a comprehensive survey. Appl Intell 51(4):2353–2376

    Google Scholar 

  32. Hussien AG, Amin M, Wang M, Liang G, Alsanad A, Gumaei A, Chen H (2020) Crow search algorithm: theory, recent advances, and applications. IEEE Access 8:173548–173565

    Google Scholar 

  33. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609

    ADS  MathSciNet  Google Scholar 

  34. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250

    Google Scholar 

  35. Hussien AG, Amin M, Abd El Aziz M (2020) A comprehensive review of moth-flame optimisation: variants, hybrids, and applications. J Exp Theor Artif Intell 32(4):705–725

    Google Scholar 

  36. Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH (2022) Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer. Expert Syst Appl 191:116158

    Google Scholar 

  37. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  38. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    ADS  Google Scholar 

  39. Passino KM (2010) Bacterial foraging optimization. Int J Swarm Intell Res (IJSIR) 1(1):1–16

    MathSciNet  Google Scholar 

  40. Price KV (2013) Differential evolution. In: Handbook of optimization, Springer, pp 187–214

  41. Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (aaa) for nonlinear global optimization. Appl Soft Comput 31:153–171

    Google Scholar 

  42. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Google Scholar 

  43. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  44. Erol OK, Eksin I (2006) A new optimization method: big bang-big crunch. Adv Eng Softw 37(2):106–111

    Google Scholar 

  45. Abualigah L, Elaziz MA, Sumari P, Khasawneh AM, Alshinwan M, Mirjalili S, Shehab M, Abuaddous HY, Gandomi AH (2022) Black hole algorithm: A comprehensive survey. Appl Intell 1–24

  46. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Google Scholar 

  47. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput & Applic 27(2):495–513

    Google Scholar 

  48. Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: A novel physics-based algorithm. Futur Gener Comput Syst 101:646–667

    Google Scholar 

  49. Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Comput Methods Appl Mech Eng 391:114570

    ADS  MathSciNet  Google Scholar 

  50. Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi AH (2022) Prairie dog optimization algorithm. Neural Comput & Applic 1–49

  51. Gürses D, Bureerat S, Sait SM, Yıldız AR (2021) Comparison of the arithmetic optimization algorithm, the slime mold optimization algorithm, the marine predators algorithm, the salp swarm algorithm for real-world engineering applications. Mater Test 63(5):448–452

    ADS  Google Scholar 

  52. Khatir S, Tiachacht S, Le Thanh C, Ghandourah E, Mirjalili S, Wahab MA (2021) An improved artificial neural network using arithmetic optimization algorithm for damage assessment in fgm composite plates. Compos Struct 273:114287

    CAS  Google Scholar 

  53. Premkumar M, Jangir P, Kumar BS, Sowmya R, Alhelou HH, Abualigah L, Yildiz AR, Mirjalili S (2021) A new arithmetic optimization algorithm for solving real-world multiobjective cec-2021 constrained optimization problems: diversity analysis and validations. IEEE Access 9:84263–84295

    Google Scholar 

  54. Al-Shourbaji I, Kachare PH, Alshathri S, Duraibi S, Elnaim B, Abd Elaziz M (2022) An efficient parallel reptile search algorithm and snake optimizer approach for feature selection. Mathematics 10(13):2351

    Google Scholar 

  55. Deeb H, Sarangi A, Mishra D, Sarangi SK (2023) Improved black hole optimization algorithm for data clustering. Journal of King Saud University-Computer and Information Sciences

  56. Fan Q, Chen Z, Li Z, Xia Z, Lin Y (2020) An efficient refracted salp swarm algorithm and its application in structural parameter identification. Engineering with Computers 1–15

  57. Zhang X, Zhao K, Niu Y (2020) Improved harris hawks optimization based on adaptive cooperative foraging and dispersed foraging strategies. IEEE Access 8:160297–160314

    Google Scholar 

  58. Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify harris hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput 89:106018

    Google Scholar 

  59. Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172

    Google Scholar 

  60. Abualigah L, Shehab M, Alshinwan M, Alabool H (2020) Salp swarm algorithm: a comprehensive survey. Neural Comput & Applic 32(15):11195–11215

    Google Scholar 

  61. Nadimi-Shahraki MH, Taghian S, Mirjalili S, Abualigah L, Abd Elaziz M, Oliva D (2021) Ewoa-opf: effective whale optimization algorithm to solve optimal power flow problem. Electronics 10(23):2975

    Google Scholar 

  62. Abualigah L, Diabat A (2021) Advances in sine cosine algorithm: a comprehensive survey. Artif Intell Rev 54(4):2567–2608

    Google Scholar 

  63. Otair M, Ibrahim OT, Abualigah L, Altalhi M, Sumari P (2022) An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks. Wirel Netw 28(2):721–744

    Google Scholar 

  64. Abualigah LM, Khader AT, Hanandeh ES (2018) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466

    Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laith Abualigah or Belal Abuhaija.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abualigah, L., Oliva, D., Jia, H. et al. Improved prairie dog optimization algorithm by dwarf mongoose optimization algorithm for optimization problems. Multimed Tools Appl 83, 32613–32653 (2024). https://doi.org/10.1007/s11042-023-16890-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16890-w

Keywords

Navigation