Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Hybrid Artificial Differential Evolution Gorilla Troops Optimizer for High-Dimensional Optimization Problems

  • Chapter
  • First Online:
Differential Evolution: From Theory to Practice

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1009))

Abstract

Differential evolution (DE) algorithm is a core and widely used metaheuristic search algorithm since 1997. Notwithstanding, DE cannot produce qualified solutions for high-dimensional optimization problems. Artificial gorilla troops optimizer (AGTO) is a recently developed optimizer on continuous optimization problems and produced good solutions on high-dimensional optimization problems. Therefore, a new hybrid algorithm, artificial differential evolution gorilla troops optimizer (ADEGTO), is proposed for solving high-dimensional optimization problems. ADEGTO uses the explorative power of DE and the exploitative power of AGTO. DE has two peculiar parameters: F and CR. These peculiar parameters of the DE algorithm directly affect the solution quality. Generally, F and CR are determined intuitively or with limited or slipshod experiments. In this work, the first experiment on DE was conducted for determining the best F and CR parameters on high-dimensional optimization problems. A 100 dimensional 26 functions are used in experiments. F and CR parameters separately set as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Totally, 63,180 (9 × 9 × 26 × 30) experiments were done. In the second experiment, the optimal F and CR for ADEGTO are investigated. The third and fourth experiments contain a new variable F parameter investigation for ADEGTO and comparisons of ADEGTO with ten state-of-the-art algorithms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  2. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press (1992)

    Google Scholar 

  3. Cinar, A.C.: Training feed-forward multi-layer perceptron artificial neural networks with a tree-seed algorithm. Arab. J. Sci. Eng. 45(12), 10915–10938 (2020)

    Article  Google Scholar 

  4. Şahman, M.A.: A discrete spotted hyena optimizer for solving distributed job shop scheduling problems. Appl. Soft Comput. 106, 107349 (2021)

    Google Scholar 

  5. Karasekreter, N., et al.: PSO-based clustering for the optimization of energy consumption in wireless sensor network. Emerg. Mater. Res. 9(3), 776–783 (2020)

    Article  Google Scholar 

  6. Oliva, D., et al.: Opposition-based moth swarm algorithm. Expert Syst. Appl. 184, 115481 (2021)

    Google Scholar 

  7. Abd Elaziz, M., et al.: Quantum marine predators algorithm for addressing multilevel image segmentation. Appl. Soft Comput. 107598 (2021)

    Google Scholar 

  8. Kaya, E., Babalik, A.: Fuzzy adaptive whale optimization algorithm for numeric optimization. Malays. J. Comput. Sci. 34(2), 184–198 (2021)

    Google Scholar 

  9. Kaya, E.: A comprehensive study of parameters analysis for galactic swarm optimization. Int. J. Intelligent Syst. Appl. Eng. 9(1), 28–37 (2021)

    Article  Google Scholar 

  10. Turkoglu, B., Kaya, E.: Training multi-layer perceptron with artificial algae algorithm. Eng. Sci. Technol. Int. J. 23(6), 1342–1350 (2020)

    Google Scholar 

  11. Korkmaz, S., Babalik, A., Kiran, M.S.: An artificial algae algorithm for solving binary optimization problems. Int. J. Mach. Learn. Cybern. 9(7), 1233–1247 (2018)

    Article  Google Scholar 

  12. Osman, A., Kalyoncu, M., Hassan, A.: The bees’algorithm for design optimization of a gripper mechanism. Selcuk Univ. J. Eng. Sci. 69–86 (2018).

    Google Scholar 

  13. Zhao, S., et al.: A novel modified Tree-Seed algorithm for high-dimensional optimization problems. Chin. J. Electron. 29(2), 337–343 (2020)

    Article  Google Scholar 

  14. Babalik, A., Cinar, A.C., Kiran, M.S.: A modification of tree-seed algorithm using Deb’s rules for constrained optimization. Appl. Soft Comput. 63, 289–305 (2018)

    Article  Google Scholar 

  15. Gulcu, Ş: Training of the artificial neural networks using states of matter search algorithm. Int. J. Intelligent Syst. Appl. Eng. 8(3), 131–136 (2020)

    Article  Google Scholar 

  16. Sağ, T., Jalil, Z.A.J.: Vortex search optimization algorithm for training of feed-forward neural network. Int. J. Mach. Learn. Cybern. 12(5), 1517–1544 (2021)

    Article  Google Scholar 

  17. Acar, Z.Y., Aydemir, F., Başçiftçi, A.: A new multi-objective artificial bee colony algorithm for multi-objective optimization problems. Selcuk Univ. J. Eng. Sci. 144–152 (2018)

    Google Scholar 

  18. MiarNaeimi, F., Azizyan, G., Rashki, M.: Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems. Knowl.-Based Syst. 213, 106711 (2021)

    Google Scholar 

  19. Fan, Q., et al.: A new improved whale optimization algorithm with joint search mechanisms for high-dimensional global optimization problems. Eng. Comput. 37(3), 1851–1878 (2021)

    Article  Google Scholar 

  20. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23(3), 715–734 (2019)

    Article  Google Scholar 

  21. Braik, M.S.: Chameleon Swarm Algorithm: a bio-inspired optimizer for solving engineering design problems. Expert Syst. Appl. 174, 114685 (2021)

    Google Scholar 

  22. Abdollahzadeh, B., Soleimanian, F., Gharehchopogh, Mirjalili, S.: Artificial gorilla troops optimizer: a new nature‐inspired metaheuristic algorithm for global optimization problems. Int. J. Intelligent Syst. (2021)

    Google Scholar 

  23. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  24. Zhang, M., et al.: A chaotic hybrid butterfly optimization algorithm with particle swarm optimization for high-dimensional optimization problems. Symmetry 12(11), 1800 (2020)

    Article  Google Scholar 

  25. Faramarzi, A., et al.: Marine Predators Algorithm: a nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020)

    Google Scholar 

  26. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  27. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  28. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  29. Joban, H.A.O., ŞAHMAN, M.A., Fatma, I.: Cost optimization of homemade diet for dogs. Int. J. Appl. Math. Electronics Comput. 8(4), 236–240 (2020)

    Google Scholar 

  30. Şahman, M.A., et al.: Cost optimization of feed mixes by genetic algorithms. Adv. Eng. Softw. 40(10), 965–974 (2009)

    Article  Google Scholar 

  31. Duman, S., Dalcalı, A., Özbay, H.: Manta ray foraging optimization algorithm–based feedforward neural network for electric energy consumption forecasting. Int. Trans. Electrical Energy Syst. e12999 (2021)

    Google Scholar 

  32. Singh, S., et al.: Nature and biologically inspired image segmentation techniques. In: Archives of Computational Methods in Engineering, pp. 1–28 (2021)

    Google Scholar 

  33. Guvenc, U., et al.: Fitness–distance balance based adaptive guided differential evolution algorithm for security-constrained optimal power flow problem incorporating renewable energy sources. Appl. Soft Comput. 108, 107421 (2021)

    Google Scholar 

  34. Kumar, B.V., Jeneessha, P., Nivethitha, M.: A differential evolutionary algorithm for image segmentation of white blood cells in acute lymphoblastic leukaemia images. In: 2020 Fourth International Conference on Inventive Systems and Control (ICISC). IEEE (2020)

    Google Scholar 

  35. Kumar, B.V., et al.: Multi-Level Colour Image Segmentation Using Differential Evolution (2020)

    Google Scholar 

  36. Yue, C., et al.: Differential evolution using improved crowding distance for multimodal multiobjective optimization. Swarm Evol. Comput. 62, 100849 (2021)

    Google Scholar 

  37. Gungor, I., et al.: Integration search strategies in tree seed algorithm for high dimensional function optimization. Int. J. Mach. Learn. Cybern. 11(2), 249–267 (2020)

    Article  Google Scholar 

  38. Gong, W., Cai, Z., Ling, C.X.: DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft. Comput. 15(4), 645–665 (2010)

    Article  Google Scholar 

  39. Zhong, X., et al.: A hybrid differential evolution based on gaining‑sharing knowledge algorithm and harris hawks optimization. Plos one 16(4), e0250951 (2021)

    Google Scholar 

  40. Korkmaz, S., et al.: Boosting the oversampling methods based on differential evolution strategies for imbalanced learning. Appl. Soft Comput. 107787 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Cevahir Cinar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cinar, A.C. (2022). A Hybrid Artificial Differential Evolution Gorilla Troops Optimizer for High-Dimensional Optimization Problems. In: Kumar, B.V., Oliva, D., Suganthan, P.N. (eds) Differential Evolution: From Theory to Practice. Studies in Computational Intelligence, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-16-8082-3_12

Download citation

Publish with us

Policies and ethics