Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Trajectory planning of parallel kinematic manipulators for the maximum dynamic load-carrying capacity

  • Parallel Manipulators
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The objective of this paper is to identify the trajectory that accomplishes the assigned motion with the maximum dynamic load-carrying capacity (DLCC) which is subject to constraints imposed by the kinematics and dynamics of a manipulator structure. In this study, the possible trajectories of the manipulator are modeled using a parametric path representation, the optimal trajectory is then obtained using a two-loop of optimization process, in which the inner-loop optimization process based on the Simplex-type linear programming method is used to determine the dynamic loading at each discrete point along the presumed trajectory and then to formulate the DLCC; the outer-loop optimization process based on the particle swarm optimization algorithm is to solve the controlled points by maximizing the formulated DLCC. The numerical results confirm the feasibility of the optimized trajectories and demonstrate the effectiveness of the proposed algorithm for the maximum dynamic load-carrying trajectory planning of a parallel kinematic manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Merlet J-P (2000) Parallel robots, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Siciliano B, Khatib O (2008) Handbook of robotics. Springer, Berlin

    Book  MATH  Google Scholar 

  3. Shiller Z, Dubowsky S (1989) Robot path planning with obstacles, actuator, gripper, and payload constraints. Int J Robot Res 8:3–18

    Article  Google Scholar 

  4. Yun W, Xi Y (1996) Optimum motion planning in joint space for robots using genetic algorithms. Robot Autonom Syst 18(4):373–393

    Article  MathSciNet  Google Scholar 

  5. Chettibi T, Lehtihet HE, Haddad M, Hanchi S (2004) Minimum cost trajectory planning for industrial robots. Eur J Mech A 23(4): 703–715

    Article  MATH  Google Scholar 

  6. Shiller Z, Chang H, Wong V (1996) The practical implementation of time-optimal control for robotic manipulators. Robot Comput Integr Manuf 12(1): 29–39 (1996)

    Article  Google Scholar 

  7. Constantinescu D, Croft A (2000) Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. J Robot Syst 17(5):233–249

    Article  MATH  Google Scholar 

  8. Park J, Bobrow JE (2005) Reliable computation of minimum-time motions for manipulators moving in obstacle field using a successive search for minimum-overload trajectories. J Robot Syst 22(1):1–14

    Article  MATH  Google Scholar 

  9. Pugazhenthi S, Nagarajan T, Singaperumal M (2002) Optimal trajectory planning for a hexapod machine tool during contour machining. Proc Inst Mech Eng Pt C 216(12):1247–1256

    Article  Google Scholar 

  10. Abdellatif H, Heimann B (2005) Adapted time-optimal trajectory planning for parallel manipulators with full dynamic modeling. In: Proceedings of IEEE international conference on robotics and automation, Barcelona, Spain, pp. 411–416 (2005)

  11. Afroum M, Chettibi T, Hanchi S (2006) Planning optimal motions for a DELTA parallel Robot. In: IEEE 14th Mediterranean conference on control and automation, Ancona, Italy, pp. 1-6 (2006)

  12. Oen KT, Wang LC (2007) Optimal dynamic trajectory planning for linearly actuated platform type parallel manipulators having task space redundant degree of freedom. Mech Mach Theory 42:727–750

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang LT, Ravani B (1988) Dynamic load carrying capacity of mechanical manipulators: part I and II. J Dyn Syst Meas Control 110(1):46–61

    Article  Google Scholar 

  14. Thomas M, Yuan-Chou HC, Tesar D (1985) Robotic manipulators based on local dynamic criteria. J Mech Transmiss Autom Des 107:163–169

    Article  Google Scholar 

  15. Wang LT, Kuo MJ (1994) Dynamic load-carrying capacity and inverse dynamics of multiple cooperating robotic manipulators. IEEE Trans Robot Autom 10(1):71–77

    Article  MathSciNet  Google Scholar 

  16. Korayem M, Ghariblu H (2003) Maximum allowable load on wheeled mobile manipulators imposing redundancy constraints. J Robot Autonom Syst 44(2):151–159

    Article  Google Scholar 

  17. Korayem M, Ghariblu H, Basu A (2005) Dynamic load-carrying capacity of mobile-base flexible joint manipulators. Int J Adv Manuf Technol 25:62–70

    Article  Google Scholar 

  18. Yue S, Tso SK, Xu WL (2001) Maximum-dynamic-payload trajectory for flexible robot manipulators with kinematic redundancy. Mech Mach Theory 36:785–800

    Article  MATH  Google Scholar 

  19. Korayem M, Shokri M (2006) Maximum dynamic load carrying capacity of 6UPS Stewart platform flexible joint Manipulator. In: Proceeding of IEEE international conference on robotic and biomimetic, Kunming, China, pp 727–736

  20. Chen CT (2012) Hybrid approach for dynamic model identification of an electro-hydraulic parallel platform. Nonlinear Dyn 67(1):695–711

    Article  Google Scholar 

  21. Chen CT, Pham HV (2012) Trajectory planning in parallel manipulators using a constrained multi-objective evolutionary algorithm. Nonlinear Dyn 67(2):1669–1681

    Article  MathSciNet  Google Scholar 

  22. Afroun M, Dequidt A, Vermeiren L (2012) Revisiting the inverse dynamics of the Gough-Stewart platform manipulator with special emphasis on universal-prismatic-spherical leg and internal singularity. Proc Inst Mech Eng Pt C 226(10):2422–2439

    Article  Google Scholar 

  23. Khalil W, Guegan S (2004) Inverse and direct dynamic modeling of Gough-Stewart robots. IEEE Trans Robot Autom 20(4):754–762

    Article  Google Scholar 

  24. Khalil W, Ibrahim O (2007) General solution for the dynamic modeling of parallel robots. J Intell Robot Syst 49:19–37

    Article  Google Scholar 

  25. Saravanan R, Ramabalan S, Balamurugan C (2008) Evolutionary optimal trajectory planning for industrial robot with payload constraints. Int J Adv Manuf Technol 38:1213–1226

    Article  Google Scholar 

  26. Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: Proceedings of IFAC symposium Computer-aided design control system, Zurich, Switzerland, pp. 113–117

  27. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, Perth, WA, pp 1942–1948

  28. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of the ROC under the Grant NSC 101-2221-E-003-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ta Chen.

Appendix

Appendix

Inertia matrix, Coriolis and centrifugal terms, gravity vector

$${\varvec{M}}_{\mathbf{1}} = \left[ {\begin{array}{*{20}c} {m_{B} \varvec{I}_{{\varvec{3} \times \varvec{3}}} } & {{}_{B}^{N} {\varvec{R}}\tilde{{\varvec{mc}_{\varvec{B}} }}^{T} } \\ {\tilde{{\varvec{mc}_{\varvec{B}} }}{}_{B}^{N} {\varvec{R}}^{T} } & {\varvec{I}_{\varvec{B}} } \\ \end{array} } \right],$$
$$\varvec{M}_{2} = \left[ {\begin{array}{*{20}c} {{\mathbf{diag}}\left[ {m_{12} , \ldots ,m_{62} } \right]} & {{\mathbf{diag}}\left[ {m_{12} \varvec{s}_{{\mathbf{1}}}^{T} \tilde{\varvec{d}}_{{{\mathbf{12}}}}^{T} , \ldots ,m_{62} \varvec{s}_{6}^{T} \tilde{\varvec{d}}_{{{\mathbf{62}}}}^{T} } \right]} \\ {{\mathbf{diag}}\left[ {m_{12} \tilde{\varvec{d}}_{{{\mathbf{12}}}} \varvec{s}_{\varvec{1}} , \ldots ,m_{62} \tilde{\varvec{d}}_{{{\mathbf{62}}}} \varvec{s}_{\varvec{6}} } \right]} & {{\mathbf{diag}}\left[ {\varvec{I}_{{\mathbf{1}}} , \ldots ,\varvec{I}_{{\mathbf{6}}} } \right]} \\ \end{array} } \right]$$

and \({\varvec{I}_{\varvec{i}}} ={\varvec{I}_{\varvec{i}{\mathbf{1}}}} + {\varvec{I}_{\varvec{i}{\mathbf{2}}}} - m_{{i2}} l_{{\varvec{i}{1}}}^{2} \tilde{\varvec{s}_{i}}^{{2}} + m_{i2} l_{i1} \left( {\tilde{\varvec{s}}_{\varvec{i}}^{T} \tilde{{\varvec{d}}}_{\varvec{i}\mathbf{2}} + \tilde{{\varvec{d}}}_{\varvec{i}\mathbf{2}}^{T} \tilde{\varvec{s}}_{\varvec{i}} } \right),\quad i = 1, \ldots ,6,\)

$${\varvec{D}}_{\mathbf{1}} = \left[ {\begin{array}{*{20}c} \varvec{0} & {{}_{B}^{N} {\varvec{R}}\tilde{{\varvec{\omega }_{\varvec{B}} }}\tilde{{\varvec{mc}_{\varvec{B}} }}^{T} } \\ \varvec{0} & {(\varvec{I}_{\varvec{B}} \otimes \varvec{\omega }_{\varvec{B}} )^{T} } \\ \end{array} } \right],$$
$$\varvec{D}_{{\mathbf{2}}} = \left[ {\begin{array}{*{20}c} 0 & {{\mathbf{diag}}\left[ {m_{12} \varvec{\omega}_{{\mathbf{1}}}^{T} \tilde{\varvec{s}}_{{\mathbf{1}}} (l_{11} \tilde{\varvec{s}}_{{\mathbf{1}}} + \tilde{\varvec{d}}_{{{\mathbf{12}}}} ), \ldots ,m_{62} \varvec{\omega}_{{\mathbf{6}}}^{T} \tilde{\varvec{s}}_{{\mathbf{6}}} (l_{61} \tilde{\varvec{s}}_{{\mathbf{6}}} + \tilde{\varvec{d}}_{{{\mathbf{62}}}} )} \right]} \\ {{\mathbf{diag}}\left[ {m_{12} (l_{11} \tilde{\varvec{s}}_{{\mathbf{1}}}^{T} + \tilde{\varvec{d}}_{{{\mathbf{12}}}}^{T} )\tilde{\varvec{s}}_{{\mathbf{1}}}\varvec{\omega}_{{\mathbf{1}}}^{{}} , \ldots ,m_{62} (l_{61} \tilde{\varvec{s}}_{6}^{T} + \tilde{\varvec{d}}_{{{\mathbf{62}}}}^{T} )\tilde{\varvec{s}}_{{\mathbf{6}}} \varvec{\omega}_{{\mathbf{6}}}^{{}} } \right]} & {{\mathbf{diag}}\left[ {\varvec{h}_{{\mathbf{1}}} , \ldots ,\varvec{h}_{{\mathbf{6}}} } \right]} \\ \end{array} } \right],$$

where \(\varvec{h}_{\varvec{i}} = {m}_{{{i}2}} {\dot{l}}_{{{i}1}} ({l}_{{{i}1}} \tilde{\varvec{s}}_{\varvec{i}}^{T} + \tilde{{\varvec{d}}}_{{\varvec{i}2}}^{T} )\tilde{\varvec{s}}_{\varvec{i}}\,+((\varvec{I}_{{\varvec{i}\varvec{1}}} + \varvec{I}_{{\varvec{i}\varvec{2}}} ) \otimes \varvec{\omega }_{\varvec{i}} )^{T} + {m}_{{{i}2}} {l}_{{{i}1}} (\varvec{\omega }_{\varvec{i}}^{T} {\varvec{d}}_{{\varvec{i}\varvec{2}}} )\tilde{\varvec{s}}_{\varvec{i}}^{T} ,\quad i = 1, \ldots, 6\)

$$\varvec{G}_{\varvec{1}} = \left[ {\begin{array}{*{20}c} { - m_{B} \varvec{g}} \\ { - {{\varvec{mc}_{\varvec{B}} }}{}_{B}^{N} {\varvec{R}}^{T} \varvec{g}} \\ \end{array} } \right],$$
$$\varvec{G}_{\mathbf{2}} = \left[ {\begin{array}{*{20}c}{\left[{\begin{array}{*{20}c} { -m_{{1{\mathbf{2}}}}\varvec{g}^{T}{}_{\varvec{1}}^{N}\varvec{Rs}_{\varvec{1}} } &\ldots& { -m_{{6{\mathbf{2}}}}\varvec{g}^{T}{}_{6}^{N} \varvec{Rs}_{\varvec{6}}} \\\end{array} } \right]^{{\text{T}}} } \\ {\left[{\begin{array}{*{20}c} {- \varvec{g}^{T}{}_{1}^{N} {\varvec{R}}(m_{{1{\mathbf{1}}}}\tilde{{\varvec{d}}}_{{\varvec{11}}} + m_{{1{\mathbf{2}}}}l_{{1{\mathbf{1}}}} \tilde{\varvec{s}}_{\varvec{i}} +m_{{1{\mathbf{2}}}} \tilde{{\varvec{d}}}_{{\varvec{12}}} )^{T} }& \ldots & { -\varvec{g}^{\text{T}}{}_{\varvec{6}}^{N} {\varvec{R}}(m_{{6{\mathbf{1}}}}\tilde{{\varvec{d}}}_{{\varvec{61}}} + m_{{6{\mathbf{2}}}}l_{{6{\mathbf{1}}}} \tilde{\varvec{s}}_{\varvec{i}} +m_{{6{\mathbf{2}}}} \tilde{{\varvec{d}}}_{{\varvec{62}}} )^{T} } \\\end{array} } \right]^{T} } \\ \end{array} } \right].$$

The actuating torques: τ = [τ 1τ 6].

It is noted that the symbol “⊗ ” in D 1 and h i denotes a skew-symmetric matrix formed from the matrix–vector product. The skew-symmetric matrix has the form like Eq. (5).

figure a

L = diag[p 1/2π … p 6/2π].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CT., Liao, TT. Trajectory planning of parallel kinematic manipulators for the maximum dynamic load-carrying capacity. Meccanica 51, 1653–1674 (2016). https://doi.org/10.1007/s11012-015-0308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0308-8

Keywords

Navigation