Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Gold nanoparticles for 99mTc-doxorubicin delivery: formulation, in vitro characterization, comparative studies in vivo stability and biodistribution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The [99mTc]Tc-Doxorubicin–Gold Nanoparticles (99mTc-Dox-AuNPs) was formulated as a nanoradiopharmaceutical by different loading procedures to enhance tumor targeting. The formula F1 that was prepared by direct loading of pre-prepared [99mTc]Tc-Doxorubicin showed a reasonable in-vitro characterization values, high entrapment efficiency (92 ± 0.72%), acceptable in vitro release data and convenient in-vitro serum stability up to 24 h. F1 presented high tumor uptake (54%ID/g) with high Target/ Non Target (T/NT) ( ≈ 77) and Drug Target Efficiency percent (%DTE) above 100% at 0.5 h via intra-tumoral injection that prove the increasing of tumor targeting and in-vivo stability by direct loading for pre-prepared [99mTc]Tc-Doxorubicin.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alam Q, Alam MZ, Karim S et al (2014) A nanotechnological approach to the management of Alzheimer disease and type 2 diabetes. CNS Neurol Disord Drug Targets 13(3):478–486

    Article  CAS  PubMed  Google Scholar 

  2. Khan AK, Rashid R, Murtaza G, Zahra A (2014) Gold nanoparticles: synthesis applications in drug delivery. Trop J Pharm Res 13(7):1169–1177

    Article  CAS  Google Scholar 

  3. Tinkle S, McNeil SE, Mühlebach S et al (2014) Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci 1313:35–56

    Article  CAS  PubMed  Google Scholar 

  4. Shittu KO, Bankole MT, Abdulkareem AS et al (2017) Application of gold nanoparticles for improved drug efficiency. Adv Nat Sci: Nanosci Nanotechnol 8(3):035014

    Google Scholar 

  5. Carabineiro SAC (2017) Applications of gold nanoparticles in nanomedicine: recent advances in vaccines. Molecules 22(5):857

    Article  PubMed Central  Google Scholar 

  6. Gao W, Xu K, Ji L, Tang B (2011) Effect of gold nanoparticles on glutathione depletion-induced hydrogen peroxide generation and apoptosis in HL7702 cells. Toxicol Lett 205(1):86–95

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh R, Singh LC, Shohet JM, Gunaratne PH (2013) A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 34(3):807–816

    Article  CAS  PubMed  Google Scholar 

  8. Turkevich J, Stevenson PL, Hillier J (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  9. Khan S, Alam F, Azam A, Khan AU (2012) Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomedicine 7:3245–3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verma HN, Singh P, Chavan RM (2014) Gold nanoparticle: Synthesis and characterization. Vet World 7(2):72–77

    Article  CAS  Google Scholar 

  11. Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6(1):9–24

    Article  CAS  PubMed  Google Scholar 

  12. Vigderman L, Zubarev ER (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev 65(5):663–676

    Article  CAS  PubMed  Google Scholar 

  13. Psimadas D, Georgoulias P, Valotassiou V, Loudos G (2012) Molecular nanomedicine towards cancer: 111In-labeled nanoparticles. J Pharm Sci 101(7):2271–2280

    Article  CAS  PubMed  Google Scholar 

  14. Papagiannopoulou D (2017) Technetium-99m radiochemistry for pharmaceutical applications. J Labelled Comp Radiopharm 60(11):502–520

    Article  CAS  PubMed  Google Scholar 

  15. Kumar P, Singh B, Sharma S et al (2012) Preclinical evaluation of [99m]Tc-labeled doxorubicin as a potential scintigraphic probe for tumor imaging. Cancer Biother Radiopharm 27(3):221–225

    CAS  PubMed  Google Scholar 

  16. Kumar P, Singh B, Ghai A et al (2015) Development of a single vial kit formulation of [99mTc]-labeled doxorubicin for tumor imaging and treatment response assessment preclinical evaluation and preliminary human results. J Label Compd Radiopharm 58:242–249

    Article  CAS  Google Scholar 

  17. Hendel T, Wuithschick M, Kettemann F et al (2014) In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives. Anal Chem 86(22):11115–111124

    Article  CAS  PubMed  Google Scholar 

  18. Lim SP, Lim YS, Pandikumar A et al (2017) Gold-silver@TiO2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Phys Chem Chem Phys 19(2):1395–1407

    Article  CAS  PubMed  Google Scholar 

  19. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  20. Scognamiglio I, De Stefano D, Campani V et al (2013) Nanocarriers for topical administration of resveratrol: a comparative study. Int J Pharm 440(2):179–187

    Article  CAS  PubMed  Google Scholar 

  21. Abd El-Halim SM, Abdelbary GA, Amin MM et al (2020) Stabilized oral nanostructured lipid carriers of Adefovir Dipivoxil as a potential liver targeting: estimation of liver function panel and uptake following intravenous injection of radioiodinated indicator. Daru 28(2):517–532

    Article  PubMed  Google Scholar 

  22. Fahmy AM, El-Setouhy DA, Ibrahim AB et al (2018) Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: in vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv 25(1):12–22

    Article  CAS  PubMed  Google Scholar 

  23. Vilcek S, Kalincák M, Machán V (1981) 99mTc-labelled compounds prepared with sodium dithionite as reducing agent. Nuklearmedizin 20(6):283–289

    Article  CAS  PubMed  Google Scholar 

  24. Ibrahim AB, Shamsel-Din HA, Hussein AS, Salem MA (2020) Brain-targeting by optimized 99mTc-olanzapine: in vivo and in silico studies. Int J Radiat Biol 96(8):1017–1027

    Article  CAS  PubMed  Google Scholar 

  25. Al-Wabli RI, Sakr TM, Khedr MA et al (2016) Platelet-12 lipoxygenase targeting via a newly synthesized curcumin derivative radiolabeled with technetium-99m. Chem Cent J 10(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shamsel-Din HA, Ibrahim AB (2017) A novel radiolabeled indole derivative as solid tumor imaging agent: in silico and preclinical pharmacological study. J Radioanal Nucl Chem 314(3):2263–2269

    Article  CAS  Google Scholar 

  27. El-Ghareb WI, Swidan MM, Ibrahim IT et al (2020) 99mTc-doxorubicin-loaded gallic acid-gold nanoparticles (99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int J Pharm 586:119514

    Article  CAS  PubMed  Google Scholar 

  28. Swidan MM, Khowessah OM, El-Motaleb MA et al (2019) Iron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99 m radionuclide: a potential molecular imaging probe for tumor diagnosis. Daru 27(1):49–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakr TM, Khowessah OM, El-Motaleb MA et al (2018) I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. Eur J Pharm Sci 122:239–245

    Article  CAS  PubMed  Google Scholar 

  30. Balcioglu M, Rana M, Yigit MV (2013) Doxorubicin loading on graphene oxide, iron oxide and gold nanoparticle hybrid. J Mater Chem B 1(45):6187–6193

    Article  CAS  PubMed  Google Scholar 

  31. Samia O, Hanan R, Kamal ET (2012) Carbamazepine mucoadhesive nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv 19(1):58–67

    Article  CAS  PubMed  Google Scholar 

  32. Shamma RN, Elsayed I (2013) Transfersomal lyophilized gel of buspirone HCl: formulation, evaluation and statistical optimization. J Liposome Res 23(3):244–254

    Article  CAS  PubMed  Google Scholar 

  33. Barrán-Berdón AL, Pozzi D, Caracciolo G et al (2013) Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29(21):6485–6494

    Article  PubMed  Google Scholar 

  34. Ibrahim AB, Sakr TM, Khoweysa OM et al (2015) Radioiodinatedanastrozole and epirubicin as potential targeting radiopharmaceuticals for solid tumor imaging. J RadioanalNucl Chem 303(1):967–975

    CAS  Google Scholar 

  35. Ibrahim AB, Salem MA, Fasih TW et al (2018) Radioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamics. J Radioanal Nucl Chem 317(3):1243–1252

    Article  CAS  Google Scholar 

  36. Sakr TM, Khedr MA, Rashed HM et al (2018) In Silico-Based repositioning of phosphinothricin as a novel technetium-99m imaging probe with potential anticancer activity. Molecules 23:496

    Article  PubMed Central  Google Scholar 

  37. Mohamed KO, Nissan YM, El-Malah AA et al (2017) Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptotic agents. Eur J Med Chem 135:424–433

    Article  CAS  PubMed  Google Scholar 

  38. Swidan MM, Sakr TM, Motaleb MA et al (2015) Preliminary Assessment of radioiodinatedfenoterol and reproterol as potential scintigraphic agents for lung imaging. J RadioanalNuclChem 303(1):531–539

    CAS  Google Scholar 

  39. Swidan MM, Sakr TM, Motaleb MA et al (2014) Radioiodinatedacebutolol as a new highly selective radiotracer for myocardial perfusion imaging. J Labelled Compound Radiopharm 57:593–599

    Article  CAS  Google Scholar 

  40. Saha GB (1993) In: methods of radiolabeling physics and radiobiology of nuclear medicine, 1st edn. Springer-Verlag, New York, pp 100–106

    Book  Google Scholar 

  41. Chow HS, Chen Z, Matsuura GT (1999) Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J Pharm Sci 88(8):754–758

    Article  CAS  PubMed  Google Scholar 

  42. Yadav S, Gattacceca F, Panicucci R, Amiji MM (2015) Comparative biodistribution and pharmacokinetic analysis of cyclosporine-A in the brain upon intranasal or intravenous administration in an oil-in-water nanoemulsion formulation. Mol Pharm 12(5):1523–1533

    Article  CAS  PubMed  Google Scholar 

  43. Kozlovskaya L, Abou-Kaoud M, Stepensky D (2014) Quantitative analysis of drug delivery to the brain via nasal route. J Control Release 189:133–140

    Article  CAS  PubMed  Google Scholar 

  44. Aryal S, Grailer JJ, Pilla S et al (2009) Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 19(42):7879–7884

    Article  CAS  Google Scholar 

  45. Liu Y, Crawford BM, Vo-Dinh T (2018) Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy 10(13):1175–1188

    Article  CAS  PubMed  Google Scholar 

  46. Ranjbar-Navazi Z, Eskandani M, Johari-Ahar M et al (2018) Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy. J Drug Target 26(3):267–277

    Article  CAS  PubMed  Google Scholar 

  47. Chaudhary A, Dwivedi C, Gupta A, Nandi CK (2015) One pot synthesis of doxorubicin loaded gold nanoparticles for sustained drug release. RSC Adv 5(118):97330–97334

    Article  CAS  Google Scholar 

  48. Cho HJ, Park JW, Yoon IS, Kim DD (2014) Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int J Nanomed 9:495–504

    Google Scholar 

  49. Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems – a review (Part 2). Trop J Pharm Res 12(2):265–273

    Google Scholar 

  50. Raghunand N, Mahoney BP, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics pHdependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol 66(7): 1219–1229

    Article  CAS  PubMed  Google Scholar 

  51. Curry D, Cameron A, MacDonald B et al (2015) Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems. Nanoscale 7(46):19611–19619

    Article  CAS  PubMed  Google Scholar 

  52. Anselmo AC, Mitragotri S (2014) Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J Control Release 190:531–541

    Article  CAS  PubMed  Google Scholar 

  53. Austin LA, Mackey MA, Dreaden EC, El-Sayed MA (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88(7):1391–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gerweck LE, Vijayappa S, Kozin S (2006) Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther 5(5):1275–1279

    Article  CAS  PubMed  Google Scholar 

  55. Wei Z, Hao J, Yuan S et al (2009) Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm 376(1–2):176–185

    Article  CAS  PubMed  Google Scholar 

  56. Torchilin V, Amiji MM (2010) In Polymeric micelles as versatile carriers for drugs and nucleic acids delivery (ed) Handbook of materials for nanomedicine. Pan Stanford Publishing, Danvers

    Google Scholar 

  57. You J, Zhang G, Li C (2010) Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 4(2):1033–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elbialy NS, Fathy MM, Khalil WM (2015) Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. Int J Pharm 490(1–2):190–199

    Article  CAS  PubMed  Google Scholar 

  59. Idani H, Matsuoka J, Yasuda T et al (2000) Intra-tumoral injection of doxorubicin (adriamycin) encapsulated in liposome inhibits tumor growth, prolongs survival time and is not associated with local or systemic side effects. Int J Cancer 88(4):645–651

    Article  CAS  PubMed  Google Scholar 

  60. Rashed HM, Marzook FA, Farag H (2016) 99mTc-zolmitriptan: radiolabeling, molecular modeling, biodistribution and gamma scintigraphy as a hopeful radiopharmaceutical for lung nuclear imaging. Radiol Med 121(12):935–943

    Article  CAS  PubMed  Google Scholar 

  61. Kim HS, Lee YS, Kim DK (2009) Doxorubicin exerts cytotoxic effects through cell cycle arrest and Fas-mediated cell death. Pharmacology 84(5):300–309

    Article  CAS  PubMed  Google Scholar 

  62. Ruttala HB, Ramasamy T, Madeshwaran T et al (2018) Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch Pharm Res 41(2):111–129

    Article  CAS  PubMed  Google Scholar 

  63. Jang SH, Wientjes MG, Au JL (2001) Determinants of paclitaxel uptake, accumulation and retention in solid tumors. Invest New Drugs 19(2):113–123

    Article  CAS  PubMed  Google Scholar 

  64. Zheng JH, Chen CT, Au JL, Wientjes MG (2001) Time- and concentration-dependent penetration of doxorubicin in prostate tumors. AAPS PharmSci 3(2):E15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Associate Prof. Tamer M. Sakr expresses his grateful appreciation and thanks for International Atomic Energy Authority (IAEA), Austria for the international collaboration and funding this work under CRP No. F22064.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed B. Ibrahim or Tamer M. Sakr.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Safoury, D.M., Ibrahim, A.B., El-Setouhy, D.A. et al. Gold nanoparticles for 99mTc-doxorubicin delivery: formulation, in vitro characterization, comparative studies in vivo stability and biodistribution. J Radioanal Nucl Chem 328, 325–338 (2021). https://doi.org/10.1007/s10967-021-07633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07633-y

Keywords

Navigation