Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Stabilized oral nanostructured lipid carriers of Adefovir Dipivoxil as a potential liver targeting: Estimation of liver function panel and uptake following intravenous injection of radioiodinated indicator

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Purpose

Adefovir dipivoxil (AD), a nucleoside reverse transcriptase inhibitor is effective against Hepatitis B virus. Its poor oral bioavailability leads to frequent administration causing severe adverse effects. Thereby the entrapment of AD within lipid nanoparticulate systems is a way of increasing AD oral bioavailability as a result of improving intestinal permeability with efficient liver-targeted delivery together with higher drug stability during storage.

Methods

AD-loaded nanostructured lipid carriers (AD-NLCs) were prepared via solvent emulsification diffusion technique adopting 24 full factorial design to study the effect of lipid percentage, presence of egg yolk lecithin, surfactant type and percentage on entrapment efficiency (E.E.%), particle size and percent in-vitro drug released after 8 h (Q8hrs).

Results

Formula (F12) showed E.E.% of 90.5 ± 0.2%, vesicle size of 240.2 ± 2.5 nm and Q8hrs of 58.55 ± 9.4% was selected as the optimum formula with desirability value of 0.757 based on highest EE%, lowest P.S. and Q8hrs. Further evaluation of the optimized formula using radioiodinated rose bengal (RIRB) in thioacetamide induced liver damage in Swiss Albino mice revealed a higher liver uptake of 22 ± 0.01% ID/g (percent injected dose/g organ) and liver uptake/Blood (T/B) ratio of 2.22 ± 0.067 post 2 h of I.V injection of RIRB compared to 9 ± 0.01% ID/g and 0.64 ± 0.017 in untreated group, respectively.

Conclusion

NLCs could be successfully used as oral drug delivery carriers of the antiviral drug Adefovir Dipivoxil to the liver with higher stability and oral bioavailability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jiang JT, Xu N, Zhang X-y, Wu C-p. Lipids changes in liver cancer. J Zhejiang Univ Sci B. 2007;8:398–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, Chang T-T, Kitis G, Rizzetto M, et al. Adefovir Dipivoxil for the treatment of hepatitis B e antigen–negative chronic hepatitis B. N Engl J Med. 2003;348:800–7.

    CAS  PubMed  Google Scholar 

  3. Marcellin P, Chang TT, Lim SG, Tong MJ, Sievert W, Shiffman ML, et al. Adefovir Dipivoxil for the treatment of hepatitis B e antigen–positive chronic hepatitis B. N Engl J Med. 2003;348:808–16.

    CAS  PubMed  Google Scholar 

  4. Lee WA, Martin JC. Perspectives on the development of acyclic nucleotide analogs as antiviral drugs. Antivir Res. 2006;71:254–9.

    CAS  PubMed  Google Scholar 

  5. Dodiya S, Chavhan S, Korde A, Sawant KK. Solid lipid nanoparticles and nanosuspension of adefovir dipivoxil for bioavailability improvement: formulation, characterization, pharmacokinetic and biodistribution studies. Drug Dev Ind Pharm. 2013;39:733–43.

    CAS  PubMed  Google Scholar 

  6. Carmona-Ribeiro AM. Biomimetic nanoparticles: preparation, characterization and biomedical applications. Int J Nanomedicine. 2010;5:249–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Abdelbary GA, Amin MM, Zakaria MY, El Awdan SA. Adefovir dipivoxil loaded proliposomal powders with improved hepatoprotective activity: formulation, optimization, pharmacokinetic, and biodistribution studies. J Liposome Res. 2018;28:259–74.

    CAS  PubMed  Google Scholar 

  8. Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7:423–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13:288–303.

    PubMed  PubMed Central  Google Scholar 

  10. Radtke M, Souto EB, Müller RH. Nanostructured lipid carriers: a novel generation of solid lipid drug carriers. Pharm Technol Eur. 2005;17:45–50.

    CAS  Google Scholar 

  11. Fang CL, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol. 2013;7:41–55.

    CAS  PubMed  Google Scholar 

  12. Huang W, Dou H, Wu H, Sun Z, Wang H, Huang L. Preparation and characterization of nobiletin-loaded nanostructured lipid carriers. J Nanomater. 2017;54:1–10.

    Google Scholar 

  13. Khan S, Baboota S, Ali J, Khan S, Narang RS, Narang JK. Nanostructured lipid carriers: an emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig. 2015;5:182–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Poonia N, Kharb R, Lather V, Pandita D. Nanostructured lipid carriers: versatile oral delivery vehicle. Futur Sci OA. 2016;2:1–24.

    Google Scholar 

  15. Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019;9:E474.

    PubMed  Google Scholar 

  16. Maker AV, Prabhakar B, Pardiwala K. The potential of intralesional rose bengal to stimulate T-cell mediated anti-tumor responses. J Clin Cell Immunol. 2015;06:1–6.

    Google Scholar 

  17. Qin J, Kunda N, Qiao G, Calata JF, Pardiwala K, Prabhakar BS, et al. Colon cancer cell treatment with rose bengal generates a protective immune response via immunogenic cell death. Cell Death Dis [Internet]. 2017 [cited 2019 May 24];8:e2584–e2584. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28151483

  18. Franchi R, Marabini A, Giorgetti PG, Santeusanio E. Use of the radioiodinated rose Bengal in the study of icterogenic hepatopathies. Ric Clin Lab. 1975;5:73–95.

    CAS  PubMed  Google Scholar 

  19. Kawaguchi M, Soble AR, Berk JE. Studies with I131-labeled rose bengal I. Derivation of a technic for use in the differential diagnosis of jaundice. Am J Dig Dis. 1962;7:289–99.

    CAS  PubMed  Google Scholar 

  20. Taplin GV, Meredith OM, Kade H. The radioactive (I131-tagged) rose bengal uptake-excretion test for liver function using external gamma-ray scintillation counting techniques. J Lab Clin Med. 1955;45:665–78.

    CAS  PubMed  Google Scholar 

  21. Dyrbye MO, Christensen LK. Clinical value of the radioactive rose bengal liver function test. Acta Med Scand. 1960;167:239–43.

    CAS  PubMed  Google Scholar 

  22. Gollin FF, Sims JL, Cameron JR. Liver scanning and liver function tests. JAMA. 1964;187:111–6.

    CAS  PubMed  Google Scholar 

  23. Rajagopal KR. Radioactive rose bengal test of liver function. Probe (Lond). 1974;14:50–3.

    Google Scholar 

  24. Gamlen TR, Triger DR, Ackery DM, Fleming JS, Grant RW, Kenny RW, et al. Quantitative liver imaging using 131-I rose Bengal as an index of liver function and prognosis. Gut. 1975;16:738–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hejri A, Khosravi A, Gharanjig K, Hejazi M. Optimisation of the formulation of β-carotene loaded nanostructured lipid carriers prepared by solvent diffusion method. Food Chem. 2013;141:117–23.

    CAS  PubMed  Google Scholar 

  26. Patil-Gadhe A, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: part I Oral bioavailability improvement. Eur J Pharm Biopharm. 2014;88:160–8.

    CAS  PubMed  Google Scholar 

  27. Shete H, Patravale V. Long chain lipid based tamoxifen NLC. Part I: Preformulation studies, formulation development and physicochemical characterization. Int J Pharm. 2013;454:573–83.

    CAS  PubMed  Google Scholar 

  28. Neupane YR, Sabir MD, Ahmad N, Ali M, Kohli K. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology. 2013;24:415102–13.

    PubMed  Google Scholar 

  29. Abd-Elbary A, El-laithy HM, Tadros MI. Sucrose stearate-based proniosome-derived niosomes for the nebulisable delivery of cromolyn sodium. Int J Pharm. 2008;357:189–98.

    CAS  PubMed  Google Scholar 

  30. Ranpise NS, Korabu SS, Ghodake VN. Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf B Biointerfaces. 2014;116:81–7.

    CAS  PubMed  Google Scholar 

  31. Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs. Eur J Pharm Sci. 2012;47:139–51.

    CAS  PubMed  Google Scholar 

  32. Hupf HB, Wanek PM, O’Brien HA, Holland LM. Rapid radioiodination of rose bengal at room temperature. J Nucl Med. 1978;19:525–9.

    CAS  PubMed  Google Scholar 

  33. O’Brien HJ, Hupf HB, Wanek PM. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. U.S. Patent. US Dep Energy. 1981;4:298, 591.

  34. Chen T-Y, Yeh S-J. Preparation of Iodine-131-labelled rose-bengal by radioactive exchange method. J Chin Chem Soc. 1964;11:94–101.

    CAS  Google Scholar 

  35. Ibrahim AB, Salem MA, Fasih TW, Brown A, Sakr TM. Radioiodinated doxorubicin as a new tumor imaging model: preparation, biological evaluation, docking and molecular dynamics. J Radioanal Nucl Chem. 2018;317:1243–52.

    CAS  Google Scholar 

  36. Shamsel-Din HA, Ibrahim AB. A novel radiolabeled indole derivative as solid tumor imaging agent: in silico and preclinical pharmacological study. J Radioanal Nucl Chem. 2017;314:2263–9.

    CAS  Google Scholar 

  37. Sakr TM, Ibrahim AB, Fasih TW, Rashed HM. Preparation and biological profile of 99mTc-lidocaine as a cardioselective imaging agent using 99mTc eluted from 99Mo/99mTc generator based on Al–Mo gel. J Radioanal Nucl Chem. 2017;314:2091–8.

    CAS  Google Scholar 

  38. Ibrahim AB, Sakr TM, Khoweysa OMA, Motaleb MA, Abd El-Bary A, El-Kolaly MT. Radioiodinated anastrozole and epirubicin as potential targeting radiopharmaceuticals for solid tumor imaging. J Radioanal Nucl Chem. 2015;303:967–75.

    CAS  Google Scholar 

  39. Aburahma MH, Abdelbary GA. Novel diphenyl dimethyl bicarboxylate provesicular powders with enhanced hepatocurative activity: preparation, optimization, in vitro/in vivo evaluation. Int J Pharm. 2012;422:139–50.

    CAS  PubMed  Google Scholar 

  40. Pawa S, Ali S. Liver necrosis and fulminant hepatic failure in rats: protection by oxyanionic form of tungsten. Biochim Biophys Acta. 1688;2004:210–22.

    Google Scholar 

  41. Fahmy AM, El-Setouhy DA, Ibrahim AB, Habib BA, Tayel SA, Bayoumi NA. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: in vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv. 2018;25:12–22.

    CAS  PubMed  Google Scholar 

  42. Ibrahim AB, Sakr TM, Khoweysa OMA, Motaleb MA, Abd El-Bary A, El-Kolaly MT. Formulation and preclinical evaluation of 99mTc–gemcitabine as a novel radiopharmaceutical for solid tumor imaging. J Radioanal Nucl Chem. 2014;302:179–86.

    CAS  Google Scholar 

  43. Motaleb MA, El-Kolaly MT, Ibrahim AB, Abd E-BA. Study on the preparation and biological evaluation of 99mTc–gatifloxacin and 99mTc–cefepime complexes. J Radioanal Nucl Chem. 2011;289:57–65.

    CAS  Google Scholar 

  44. El-Setouhy DA, Ibrahim AB, Amin MM, Khowessah OM, Elzanfaly ES. Intranasal haloperidol-loaded miniemulsions for brain targeting: evaluation of locomotor suppression and in-vivo biodistribution. Eur J Pharm Sci. 2016;92:244–54.

    CAS  PubMed  Google Scholar 

  45. Mohammadi M, Pezeshki A, Abbasi MM, Ghanbarzadeh B, Hamishehkar H. Vitamin D3-loaded nanostructured lipid carriers as a potential approach for fortifying food beverages; in vitro and in vivo evaluation. Adv Pharm Bull. 2017;7:61–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.

    PubMed  Google Scholar 

  47. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–96.

    CAS  PubMed  Google Scholar 

  48. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170–84.

    CAS  PubMed  Google Scholar 

  49. Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014;11:1865–83.

    CAS  PubMed  Google Scholar 

  50. Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev. 2007;59:667–76.

    CAS  PubMed  Google Scholar 

  51. Westesen K, Siekmann B, Koch MHJ. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int J Pharm. 1993;93:189–99.

    CAS  Google Scholar 

  52. Souto EB, Müller RH. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. In: Korting MS, editor. Drug Deliv handb Exp Pharmacol vol 197. Berlin: Springer; 2010. p. 115–41.

    Google Scholar 

  53. Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm. 2006;314:83–9.

    CAS  PubMed  Google Scholar 

  54. Jenning V, Mäder K, Gohla SH. Solid lipid nanoparticles (SLN) based on binary mixtures of liquid and solid lipids: a (1)H-NMR study. Int J Pharm. 2000;205:15–21.

    CAS  PubMed  Google Scholar 

  55. Triplett MD, Rathman JF. Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique. J Nanopart Res. 2009;11:601–14.

    CAS  Google Scholar 

  56. Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007;328:191–5.

    CAS  PubMed  Google Scholar 

  57. Dai WG, Dong LC, Li S, Deng Z. Combination of Pluronic/vitamin E TPGS as a potential inhibitor of drug precipitation. Int J Pharm. 2008;355:31–7.

    CAS  PubMed  Google Scholar 

  58. Ghosh I, Bose S, Vippagunta R, Harmon F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm. 2011;409:260–8.

    CAS  PubMed  Google Scholar 

  59. Chen Y, Yang X, Zhao L, Almásy L, Garamus VM, Willumeit R, et al. Preparation and characterization of a nanostructured lipid carrier for a poorly soluble drug. Colloids Surf A Physicochem Eng Asp. 2014;455:36–43.

    CAS  Google Scholar 

  60. Zhuang CY, Li N, Wang M, Zhang XN, Pan WS, Peng JJ, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394:179–85.

    CAS  PubMed  Google Scholar 

  61. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12:62–76.

    CAS  PubMed  Google Scholar 

  62. Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm. 1998;168:221–9.

    CAS  Google Scholar 

  63. Gardouh AR, Faheim SH, Noah AT, Ghorab MM. Influence of formulation factors on the size of nanostructured lipid carriers and nanoemulsions prepared by high shear homogenization. Int J Pharm Pharm Sci. 2018;10:61.

    CAS  Google Scholar 

  64. Hu L, Tang X, Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol. 2004;56:1527–35.

    CAS  PubMed  Google Scholar 

  65. Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242:121–8.

    PubMed  Google Scholar 

  66. zur Mühlen A, zur Mühlen E, Niehus H, Mehnert W. Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res. 1996;13:1411–6.

    PubMed  Google Scholar 

  67. Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces. 2005;45:167–73.

    CAS  PubMed  Google Scholar 

  68. Sun CZ, Lu CT, Zhao YZ, Guo P, Tian JL, Zhang L, et al. Characterization of the doxorubicin-pluronic F68 conjugate micelles and their effect on doxorubicin resistant human erythroleukemic cancer cells. J Nanomedicine Nanotechnol. 2011;2:2–7.

    Google Scholar 

  69. Pereira RR, Testi M, Rossi F, Silva Junior JOC, Ribeiro-Costa RM, Bettini R, et al. Ucuùba (Virola surinamensis) fat-based nanostructured lipid carriers for nail drug delivery of ketoconazole: development and optimization using box-behnken design. Pharmaceutics. 2019;11:284.

    CAS  PubMed Central  Google Scholar 

  70. Yang G, Wu F, Chen M, Jin J, Wang R, Yuan Y. Formulation design, characterization, and in vitro and in vivo evaluation of nanostructured lipid carriers containing a bile salt for oral delivery of gypenosides. Int J Nanomedicine. 2019;14:2267–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Patel RJ, Patel ZP. Formulation optimization and evaluation of nanostructured lipid carriers containing valsartan. Int J Pharm Sci Nanotechnol. 2013;6:2077–86.

    Google Scholar 

  72. Nour SA, Abdelmalak NS, Naguib MJ, Rashed HM, Ibrahim AB. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv. 2016;23:3681–95.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shady M. Abd El-Halim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Halim, S.M., Abdelbary, G.A., Amin, M.M. et al. Stabilized oral nanostructured lipid carriers of Adefovir Dipivoxil as a potential liver targeting: Estimation of liver function panel and uptake following intravenous injection of radioiodinated indicator. DARU J Pharm Sci 28, 517–532 (2020). https://doi.org/10.1007/s40199-020-00355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-020-00355-8

Keywords

Navigation