Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Preparation, design, structure and application of aerogel-based materials for noise control

  • Invited Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The imminent threat of noise pollution requires the development of efficient acoustic materials. Aerogels have been considered as a promising noise reduction materials due to their special porous structure, lightweight and acoustic delay characteristics. Currently, a variety of aerogels are investigated on materials, fabrication processes and structural design to explore the feasibility of aerogels as acoustic materials. This paper explains the acoustic mechanism for noise control, describes the mathematical models of sound absorption and insulation, as well as the preparation process of aerogels, and finally reviews the research progress and building application of aerogels in noise control. The future development of aerogels in noise control is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

α 0 :

Sound absorption coefficient

E i :

Total incident sound energy

E t :

Transmitted sound energy

Z 0 :

Characteristic impedance

l :

Thickness

\(c_{0}\) :

Sound velocity

σ :

Airflow resistivity

ω :

The angular frequency

X :

Imaginary part of characteristic impedance

\(\beta\) :

The imaginary part of propagation coefficient

\(\widetilde{{k_{eq} }}\) :

Dynamic bulk modulus

\(\widetilde{\alpha \left( \omega \right)}\) :

The dynamic tortuosity

\(\nu\) :

The kinematic viscosity

Λ :

The viscous characteristic length

\(P_{0}\) :

The static pressure

P r :

The Prandtl number

\(\Lambda^{\prime }\) :

The thermal characteristic

\(\tau\) :

The ratio of the transmitted intensity to the incident intensity

M :

The mass per unit area of the material

f Co :

Coincidence frequency

μ :

Poisson’s ratio

E α :

Absorbed sound energy

E r :

Reflected sound energy

\(Z\) :

Surface characteristic impedance

γ :

Propagation coefficient

\(\rho_{0}\) :

Air density

\(f\) :

Frequency

\(j\) :

The complex number

R :

The real part of characteristic impedance

\(\alpha\) :

The real part of propagation coefficient

\(\widetilde{{\rho_{eq} }}\) :

Dynamic density

Ψ :

The open porosity

α :

The dynamic tortuosity

\(k_{0}\) :

The static viscous permeability

\(k\) :

The specific heat ratio

\(\widetilde{{\alpha^{\prime } \left( w \right)}}\) :

The thermal tortuosity

\(k_{0}^{\prime }\) :

The static thermal permeability

STL :

Sound Transmission Loss

f R :

The resonance frequency

\(\theta\) :

The angle of incidence

\(\rho_{m}\) :

The density of the material

E :

Young’s modulus

References

  1. Hong A, Kim B, Widener M (2019) Noise and the city: leveraging crowdsourced big data to examine the spatio-temporal relationship between urban development and noise annoyance. Environ Plan B Urban Anal City Sci 47:1201. https://doi.org/10.1177/2399808318821112

    Article  Google Scholar 

  2. Welch D, Shepherd D, Dirks KN, Reddy R (2023) Health effects of transport noise. Transp Rev 43:1190. https://doi.org/10.1080/01441647.2023.2206168

    Article  Google Scholar 

  3. Slabbekoorn H (2019) Noise pollution. Curr Biol 29:R957. https://doi.org/10.1016/j.cub.2019.07.018

    Article  PubMed  CAS  Google Scholar 

  4. Mannucci PM, Ancona C (2021) Noise and air pollution as triggers of hypertension. Eur Heart J 42:2085. https://doi.org/10.1093/eurheartj/ehab104

    Article  PubMed  Google Scholar 

  5. Gupta A, Gupta A, Jain K, Gupta S (2018) Noise Pollution and Impact on Children Health. Indian J Pediatr 85:300. https://doi.org/10.1007/s12098-017-2579-7

    Article  PubMed  Google Scholar 

  6. Gao NS, Zhang ZC, Deng J, Guo XY, Cheng BZ, Hou H (2022) Acoustic metamaterials for noise reduction: a review. Adv Mater Technol 7:2100698. https://doi.org/10.1002/admt.202100698

    Article  Google Scholar 

  7. Pan J, Paurobally R, Qiu XJ (2016) Active noise control in workplaces. Acoust Aust 44:45. https://doi.org/10.1007/s40857-015-0035-2

    Article  Google Scholar 

  8. Lam B, Gan WS, Shi DY, Nishimura M, Elliott S (2021) Ten questions concerning active noise control in the built environment. Build Environ 200:107928. https://doi.org/10.1016/j.buildenv.2021.107928

    Article  Google Scholar 

  9. Cops MJ, McDaniel JG, Magliula EA, Bamford DJ, Bliefnick J (2020) Measurement and analysis of sound absorption by a composite foam. Appl Acoust 160:107138. https://doi.org/10.1016/j.apacoust.2019.107138

    Article  Google Scholar 

  10. Hu J, Li X, Han R et al (2023) Effect of papermaking technique parameters on air permeability and sound insulation of glass fiber felt. J Ind Text 53:15280837231157266. https://doi.org/10.1177/15280837231157266

    Article  Google Scholar 

  11. Isaac CW, Pawelczyk M, Wrona S (2020) Comparative study of sound transmission losses of sandwich composite double panel walls. Appl Sci 10:1543. https://doi.org/10.3390/app10041543

    Article  CAS  Google Scholar 

  12. Ge YM, Xue JY, Liu LP, Yang Y (2023) Preparation and sound insulation of honeycomb composite structures filled with glass fiber. Polym Compos 45(2):1649–1663. https://doi.org/10.1002/pc.27879

    Article  CAS  Google Scholar 

  13. Yang T, Hu L, Xiong X et al (2020) Sound absorption properties of natural fibers: a review. Sustainability 12(20):8477. https://doi.org/10.3390/su12208477

    Article  CAS  Google Scholar 

  14. Cao L, Fu Q, Si Y, Ding B, Yu J (2018) Porous materials for sound absorption. Compos Commun 10:25. https://doi.org/10.1016/j.coco.2018.05.001

    Article  Google Scholar 

  15. Kalauni K, Pawar SJ (2019) A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J Porous Mater 26:1795. https://doi.org/10.1007/s10934-019-00774-2

    Article  CAS  Google Scholar 

  16. Cao X, Liu Y, Sun Q, Che T, Wu C, Yang Y (2024) CNTs/PVA composite aerogel for efficient microwave and acoustic absorption. Compos Struct 329:117805. https://doi.org/10.1016/j.compstruct.2023.117805

    Article  CAS  Google Scholar 

  17. Cummer SA, Christensen J, Alù A (2016) Controlling sound with acoustic metamaterials. Nat Rev Mater 1:16001. https://doi.org/10.1038/natrevmats.2016.1

    Article  Google Scholar 

  18. Gao N, Zhang Z, Deng J, Guo X, Cheng B, Hou H (2022) Acoustic metamaterials for noise reduction: a review. Adv Mater Technol 7(6):2100698. https://doi.org/10.1002/admt.202100698

    Article  Google Scholar 

  19. Xue JY, Han RN, Li YM, Zhang JX, Liu JX, Yang Y (2023) Advances in multiple reinforcement strategies and applications for silica aerogel. J Mater Sci 58:14255. https://doi.org/10.1007/s10853-023-08945-y

    Article  CAS  Google Scholar 

  20. Keshavarz L, Ghaani MR, MacElroy JMD, English NJ (2021) A comprehensive review on the application of aerogels in CO2-adsorption: materials and characterisation. Chem Eng J 412:128604. https://doi.org/10.1016/j.cej.2021.128604

    Article  CAS  Google Scholar 

  21. Gan GQ, Li XY, Fan SY et al (2019) Carbon aerogels for environmental clean-up. Eur J Inorg Chem 2019(27):3126–3141. https://doi.org/10.1002/ejic.201801512

    Article  CAS  Google Scholar 

  22. Gibiat V, Lefeuvre O, Woignier T, Pelous J, Phalippou J (1995) Acoustic properties and potential applications of silica aerogels. J Non-Cryst Solids 186:244. https://doi.org/10.1016/0022-3093(95)00049-6

    Article  CAS  Google Scholar 

  23. Mazrouei-Sebdani Z, Begum H, Schoenwald S, Horoshenkov KV, Malfait WJ (2021) A review on silica aerogel-based materials for acoustic applications. J Non-Cryst Solids 562:120770. https://doi.org/10.1016/j.jnoncrysol.2021.120770

    Article  CAS  Google Scholar 

  24. Xiao Q, Xue J, Meng Y, Ding Y, Yang Y (2024) Lightweight and hydrophobic silica aerogel/glass fiber composites with hierarchical networks for outstanding thermal and acoustic insulation. Ceram Int 50(24):54473–54481. https://doi.org/10.1016/j.ceramint.2024.10.303

    Article  CAS  Google Scholar 

  25. Fahy FJ (2003) Foundations of engineering acoustics. Elsevier

    Google Scholar 

  26. Fediuk R, Amran M, Vatin N, Vasilev Y, Lesovik V, Ozbakkaloglu T (2021) Acoustic properties of innovative concretes: a review. Materials (Basel) 14(2):398. https://doi.org/10.3390/ma14020398

    Article  PubMed  CAS  Google Scholar 

  27. Cox TJ, D’Antonio P (2005) Acoustic absorbers and diffusers: theory, design, and application. J Acoust Soc Am 117(3):988. https://doi.org/10.1121/1.1861060

  28. Zwikker C, Van den Eijk J, Kosten CW (1943) Absorption of sound by porous material V. Physica 10:239. https://doi.org/10.1016/S0031-8914(43)90040-0

    Article  Google Scholar 

  29. Delany ENBME (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust 3:105. https://doi.org/10.1016/0003-682x(70)90031-9

    Article  Google Scholar 

  30. Meric C, Erol H, Özkan A (2016) On the sound absorption performance of a felt sound absorber. Appl Acoust 114:275. https://doi.org/10.1016/j.apacoust.2016.08.003

    Article  Google Scholar 

  31. Wang YH, Zhang CC, Ren LQ, Ichchou M, Galland MA, Bareille O (2014) Sound absorption of a new bionic multi-layer absorber. Compos Struct 108:400. https://doi.org/10.1016/j.compstruct.2013.09.029

    Article  Google Scholar 

  32. Miki Y (1990) Acoustical properties of porous materials—modifications of Delany–Bazley models. J Acoust Soc Jpn 11:19

    Article  Google Scholar 

  33. Komatsu T (2008) Improvement of the Delany–Bazley and Miki models for fibrous sound-absorbing materials. Acoust Sci Technol 29(2):121–129. https://doi.org/10.1250/ast.29.121

    Article  Google Scholar 

  34. Chevillotte F, Perrot C (2017) Effect of the three-dimensional microstructure on the sound absorption of foams: a parametric study. J Acoust Soc Am 142:1130. https://doi.org/10.1121/1.4999058

    Article  PubMed  Google Scholar 

  35. Johnson DL, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous-media. J Fluid Mech 176:379. https://doi.org/10.1017/S0022112087000727

    Article  CAS  Google Scholar 

  36. Ricciardi P, Belloni E, Cotana F (2014) Innovative panels with recycled materials: thermal and acoustic performance and life cycle assessment. Appl Energy 134:150. https://doi.org/10.1016/j.apenergy.2014.07.112

    Article  Google Scholar 

  37. Arenas JP, Crocker MJ (2010) Recent trends in porous sound-absorbing materials. Sound Vib 44:12

    Google Scholar 

  38. Gu JT, Tang YH, Wang XL, Huang ZY (2022) Laminated plate-type acoustic metamaterials with Willis coupling effects for broadband low-frequency sound insulation. Compos Struct 292:115689. https://doi.org/10.1016/j.compstruct.2022.115689

    Article  Google Scholar 

  39. Barron RF (2001) Industrial noise control and acoustics. CRC Press

    Google Scholar 

  40. Zhao J, Wang XM, Chang JM, Yao Y, Cui Q (2010) Sound insulation property of wood-waste tire rubber composite. Compos Sci Technol 70:2033. https://doi.org/10.1016/j.compscitech.2010.03.015

    Article  CAS  Google Scholar 

  41. Xue JY, Han RA, Ge YM, Liu LP, Yang Y (2024) Preparation, mechanical, acoustic and thermal properties of silica composite aerogel using wet-laid glass fiber felt as scaffold. Compos Part A Appl Sci Manuf 179:108058. https://doi.org/10.1016/j.compositesa.2024.108058

    Article  CAS  Google Scholar 

  42. Talebitooti R, Gohari HD, Zarastvand MR (2017) Multi objective optimization of sound transmission across laminated composite cylindrical shell lined with porous core investigating Non-dominated Sorting Genetic Algorithm. Aerosp Sci Technol 69:269. https://doi.org/10.1016/j.ast.2017.06.008

    Article  Google Scholar 

  43. Lee CM, Xu Y (2009) A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials. J Sound Vib 326:290. https://doi.org/10.1016/j.jsv.2009.04.037

    Article  Google Scholar 

  44. Yang Y, Chen Z, Chen ZF, Fu RL, Li YF (2015) Sound insulation properties of sandwich structures on glass fiber felts. Fib Polym 16:1568. https://doi.org/10.1007/s12221-015-5200-6

    Article  Google Scholar 

  45. Saunders H (1984) Engineering principles of acoustics noise and vibration control—Reynolds, DD. J Vib Acoust Stress Reliab Des Trans ASME 106:320

    Article  Google Scholar 

  46. Tadeu AJB, Mateus DMR (2001) Sound transmission through single, double and triple glazing. Exp Eval Appl Acoust 62:307. https://doi.org/10.1016/S0003-682x(00)00032-3

    Article  Google Scholar 

  47. Yang Y, Li BB, Chen ZF et al (2016) Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels. Compos Part B Eng 96:281. https://doi.org/10.1016/j.compositesb.2016.04.046

    Article  Google Scholar 

  48. Hrubesh LW, Poco JF (1995) Thin aerogel films for optical, thermal, acoustic and electronic applications. J Non-Cryst Solids 188:46. https://doi.org/10.1016/0022-3093(95)00028-3

    Article  CAS  Google Scholar 

  49. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335. https://doi.org/10.1016/S0022-3093(98)00135-5

    Article  CAS  Google Scholar 

  50. Higashitani S, Miura M, Yamamoto M, Nagai K (2005) Sound propagation in superfluid He in aerogel. J Phys Chem Solids 66:1334. https://doi.org/10.1016/j.jpcs.2005.05.007

    Article  CAS  Google Scholar 

  51. Herman T, Beamish JR (2005) Low frequency acoustic resonance studies of the liquid-vapor transition in silica aerogel. J Low Temp Phys 141:193. https://doi.org/10.1007/s10909-005-8537-1

    Article  CAS  Google Scholar 

  52. Schlief T, Gross J, Fricke J (1992) Ultrasonic attenuation in silica aerogels. J Non-Cryst Solids 145:223. https://doi.org/10.1016/S0022-3093(05)80460-0

    Article  CAS  Google Scholar 

  53. Xie Y, Zhou B, Du A (2021) Slow-sound propagation in aerogel-inspired hybrid structure with backbone and dangling branch. Adv Compos Hybrid Mater 4:248. https://doi.org/10.1007/s42114-021-00234-z

    Article  CAS  Google Scholar 

  54. Ghimire S, Sabri F (2023) K-wave modelling of ultrasound wave propagation in aerogels and the effect of physical parameters on attenuation and loss. Appl Phys A 129:286. https://doi.org/10.1007/s00339-023-06586-1

    Article  CAS  Google Scholar 

  55. John BH, Conroy FT (1999) Microscale thermal relaxation during acoustic propagation in aerogel and other porous media. Microscale Thermophys Eng 3:199. https://doi.org/10.1080/108939599199756

    Article  Google Scholar 

  56. Forest L, Gibiat V, Woignier T (1998) Blot’s theory of acoustic propagation in porous media applied to aerogels and alcogels. J Non-Cryst Solids 225:287. https://doi.org/10.1016/S0022-3093(98)00325-1

    Article  CAS  Google Scholar 

  57. Caponi S, Fontana A, Montagna M et al (2003) Acoustic attenuation in silica porous systems. J Non-Cryst Solids 322:29. https://doi.org/10.1016/S0022-3093(03)00167-4

    Article  CAS  Google Scholar 

  58. Leão SG, Monteiro EC, dos Reis MO, Mapa LPP, Avila AF (2022) Noise attenuation inside airplane cabin: preliminary results on combined porous/nano-fibrous materials. Appl Acoust 199:109009. https://doi.org/10.1016/j.apacoust.2022.109009

    Article  Google Scholar 

  59. Malakooti S, Churu HG, Lee A et al (2017) Sound insulation properties in low-density, mechanically strong and ductile nanoporous polyurea aerogels. J Non-Cryst Solids 476:36. https://doi.org/10.1016/j.jnoncrysol.2017.09.005

    Article  CAS  Google Scholar 

  60. Wang G, Luo J, Yuan W, Ma B (2023) Investigation on low frequency acoustic characteristics of parallel-arranged microperforated panel with aerogel-filled back cavities. Appl Acoust 207:109347. https://doi.org/10.1016/j.apacoust.2023.109347

    Article  Google Scholar 

  61. Budtova T, Lokki T, Malakooti S et al (2022) Acoustic properties of aerogels: current status and prospects. Adv Eng Mater 25(6):2201137. https://doi.org/10.1002/adem.202201137

    Article  Google Scholar 

  62. Mohammadi B, Ershad-Langroudi A, Moradi G, Safaiyan A, Habibi P (2022) Mechanical and sound absorption properties of open-cell polyurethane foams modified with rock wool fiber. J Build Eng 48:103872. https://doi.org/10.1016/j.jobe.2021.103872

    Article  Google Scholar 

  63. I British Standards, S International Organization for, S European Committee for (2001) Acoustics: determination of sound absorption coefficient and impedance in impedances tubes. Part 1. Method using standing wave ratio. British Standards Institution, London

  64. I British Standards, S International Organization for, S European Committee for (2002) Acoustics: determination of sound absorption coefficient and impedance in impedances tubes. Part 2: Transfer-function method. British Standards Institution, London

  65. Lin MD, Tsai KT, Su BS (2009) Estimating the sound absorption coefficients of perforated wooden panels by using artificial neural networks. Appl Acoust 70:31. https://doi.org/10.1016/j.apacoust.2008.02.001

    Article  Google Scholar 

  66. Cops A, Vanhaecht J, Leppens K (1995) Sound-absorption in a reverberation room—causes of discrepancies on measurement results. Appl Acoust 46:215. https://doi.org/10.1016/0003-682x(95)00029-9

    Article  Google Scholar 

  67. CN Standards (2008) Acoustics—measurement of sound absorption in a reverberation room, Taiwan

  68. Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. ASTM International

  69. S International Organization for (1985) Acoustics—measurement of sound absorption in a reverberation room. ISO, S.l.

  70. Tang Y, Chuang X-J, Ghazali R (2022) Tuning of estimated sound absorption coefficient of materials of reverberation room method. Shock Vib 2022:1. https://doi.org/10.1155/2022/5192984

    Article  Google Scholar 

  71. Ziegler C, Wolf A, Liu W, Herrmann AK, Gaponik N, Eychmuller A (2017) Modern inorganic aerogels. Angew Chem Int Ed Engl 56:13200. https://doi.org/10.1002/anie.201611552

    Article  PubMed  CAS  Google Scholar 

  72. Shi B, Zhou Z, Chen Y, Wang X, Xu B (2023) Preparation and properties of hydrophobic and highly transparent SiO2 aerogels. Ceram Int 49:27597. https://doi.org/10.1016/j.ceramint.2023.06.040

    Article  CAS  Google Scholar 

  73. Rose A, Hofmann A, Voepel P, Milow B, Marschall R (2022) Photocatalytic activity and electron storage capability of TiO2 aerogels with an adjustable surface area. ACS Appl Energy Mater 5:14966. https://doi.org/10.1021/acsaem.2c02517

    Article  CAS  Google Scholar 

  74. Yan W, Ai W, Liu W et al (2023) Ultra-sensitive SnO2 aerogel in nano-trace ethanol detection. J Alloys Compd 943:169042. https://doi.org/10.1016/j.jallcom.2023.169042

    Article  CAS  Google Scholar 

  75. Zhu Z, Wang X, Zhang X et al (2024) High transmittance and ultra-low thermal conductivity ZrO2 aerogel via zirconium hydroxyacetate precursor. Ceram Int 50:4423. https://doi.org/10.1016/j.ceramint.2023.11.153

    Article  CAS  Google Scholar 

  76. Wangoh LW, Huang Y, Jezorek RL et al (2016) Correlating lithium hydroxyl accumulation with capacity retention in V2O5 aerogel cathodes. ACS Appl Mater Interfaces 8:11532. https://doi.org/10.1021/acsami.6b02759

    Article  PubMed  CAS  Google Scholar 

  77. Cheng W, Rechberger F, Niederberger M (2016) Three-dimensional assembly of yttrium oxide nanosheets into luminescent aerogel monoliths with outstanding adsorption properties. ACS Nano 10:2467. https://doi.org/10.1021/acsnano.5b07301

    Article  PubMed  CAS  Google Scholar 

  78. Nguyen TD, Tang D, D’Acierno F, Michal CA, MacLachlan MJ (2018) Biotemplated lightweight γ-alumina aerogels. Chem Mater 30:1602. https://doi.org/10.1021/acs.chemmater.7b04800

    Article  CAS  Google Scholar 

  79. Falk G, Borlaf M, Bendo T, de Oliveira APN, Neto JBR, Moreno R (2016) Colloidal sol–gel synthesis and photocatalytic activity of nanoparticulate Nb2O5 sols. J Am Ceram Soc 99:1968. https://doi.org/10.1111/jace.14217

    Article  CAS  Google Scholar 

  80. Zhang R, Zhao Y (2020) Preparation and electrocatalysis application of pure metallic aerogel: a review. Catalysts 10:1376. https://doi.org/10.3390/catal10121376

    Article  CAS  Google Scholar 

  81. Liao W, Xiao K, Tian T, Pan MP (2024) Carbon aerogel monoliths from polymers: a review. J Clean Prod 437:140736. https://doi.org/10.1016/j.jclepro.2024.140736

    Article  CAS  Google Scholar 

  82. Kéri M, Nagy B, László K, Bányai I (2021) Structural changes in resorcinol formaldehyde aerogel seen by NMR. Microporous Mesoporous Mater 317:110988. https://doi.org/10.1016/j.micromeso.2021.110988

    Article  CAS  Google Scholar 

  83. Wang D, Li ZY, Yang L et al (2023) Hydrogel electrolyte based on sodium polyacrylate/KOH hydrogel reinforced with bacterial cellulose aerogel for flexible supercapacitors. Chem Eng J 454:140090. https://doi.org/10.1016/j.cej.2022.140090

    Article  CAS  Google Scholar 

  84. Kulkarni A, Jana SC (2021) Surfactant-free syndiotactic polystyrene aerogel foams via Pickering emulsion. Polymer 212:123125. https://doi.org/10.1016/j.polymer.2020.123125

    Article  CAS  Google Scholar 

  85. Masika E, Mokaya R (2013) High surface area metal salt templated carbon aerogels a simple subcritical drying route: preparation and CO2 uptake properties. RSC Adv 3:17677. https://doi.org/10.1039/c3ra43420f

    Article  CAS  Google Scholar 

  86. Xiao H, Lv J-B, Tan W et al (2022) Ultrasound-assisted freeze-drying process for polyimide aerogels. Chem Eng J 450:138344. https://doi.org/10.1016/j.cej.2022.138344

    Article  CAS  Google Scholar 

  87. Li WC, Guo SC (2000) Preparation of low-density carbon aerogels from a cresol/formaldehyde mixture. Carbon 38:1520. https://doi.org/10.1016/S0008-6223(00)00114-7

    Article  CAS  Google Scholar 

  88. Lachowicz D, Kmita A, Wirecka R et al (2023) Aerogels based on cationically modified chitosan and poly(vinyl alcohol) for efficient capturing of viruses. Carbohydr Polym 312:120756. https://doi.org/10.1016/j.carbpol.2023.120756

    Article  PubMed  CAS  Google Scholar 

  89. Meng GH, Peng HL, Wu JN et al (2017) Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation. Fibers Polym 18:706. https://doi.org/10.1007/s12221-017-1099-4

    Article  CAS  Google Scholar 

  90. Zhang ML, Jiang S, Han FY, Li MM, Wang N, Liu LF (2021) Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydr Polym 264:118033. https://doi.org/10.1016/j.carbpol.2021.118033

    Article  PubMed  CAS  Google Scholar 

  91. Franco P, Cardea S, Tabernero A, De Marco I (2021) Porous aerogels and adsorption of pollutants from water and air: a review. Molecules 26:4440. https://doi.org/10.3390/molecules26154440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Takeshita S, Zhao SY, Malfait WJ (2021) Transparent, aldehyde-free chitosan aerogel. Carbohydr Polym 251:117089. https://doi.org/10.1016/j.carbpol.2020.117089

    Article  PubMed  CAS  Google Scholar 

  93. Pan JJ, Li Y, Chen KL, Zhang YP, Zhang H (2021) Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking. Carbohydr Polym 266:118102. https://doi.org/10.1016/j.carbpol.2021.118102

    Article  PubMed  CAS  Google Scholar 

  94. Maroulas KN, Trikkaliotis DG, Metaxa ZS et al (2023) Super-hydrophobic chitosan/graphene-based aerogels for oil absorption. J Mol Liq 390:123071. https://doi.org/10.1016/j.molliq.2023.123071

    Article  CAS  Google Scholar 

  95. Wei DQ, Liu X, Lv SH et al (2022) Fabrication, structure, performance, and application of graphene-based composite aerogel. Materials 15:299. https://doi.org/10.3390/ma15010299

    Article  CAS  Google Scholar 

  96. Barrios E, Fox D, Sip YYL et al (2019) Nanomaterials in advanced, high-performance aerogel composites: a review. Polymers 11:726. https://doi.org/10.3390/polym11040726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Esposito S (2019) “Traditional” sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 12:668. https://doi.org/10.3390/ma12040668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Maleki H, Duraes L, García-González CA, del Gaudio P, Portugal A, Mahmoudi M (2016) Synthesis and biomedical applications of aerogels: possibilities and challenges. Adv Coll Interface Sci 236:1. https://doi.org/10.1016/j.cis.2016.05.011

    Article  CAS  Google Scholar 

  99. Ahmad S, Ahmad S, Sheikh JN (2023) Silica centered aerogels as advanced functional material and their applications: a review. J Non-Cryst Solids 611:122322. https://doi.org/10.1016/j.jnoncrysol.2023.122322

    Article  CAS  Google Scholar 

  100. Chen Y, Zhang L, Yang Y et al (2021) Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication. Appl Adv Mater 33:e2005569. https://doi.org/10.1002/adma.202005569

    Article  CAS  Google Scholar 

  101. Nascimento DM, Nunes YL, Figueirêdo MCB et al (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20:2428. https://doi.org/10.1039/c8gc00205c

    Article  CAS  Google Scholar 

  102. Zhang XF, Elsayed I, Navarathna C, Schueneman GT, Hassan EIB (2019) Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl Mater Interfaces 11:46714. https://doi.org/10.1021/acsami.9b15139

    Article  PubMed  CAS  Google Scholar 

  103. Wu XD, Kai Z, Jie D et al (2020) Facile synthesis of flexible and hydrophobic polymethylsilsesquioxane based silica aerogel via the co-precursor method and ambient pressure drying technique. J Non-Cryst Solids 530:119826. https://doi.org/10.1016/j.jnoncrysol.2019.119826

    Article  CAS  Google Scholar 

  104. Ziegler C, Wolf A, Liu W, Herrmann AK, Gaponik N, Eychmüller A (2017) Modern inorganic aerogels. Angew Chem -Int Ed 56:13200. https://doi.org/10.1002/anie.201611552

    Article  CAS  Google Scholar 

  105. Lermontov SA, Malkova AN, Sipyagina NA et al (2017) Facile synthesis of fluorinated resorcinol-formaldehyde aerogels. J Fluorine Chem 193:1. https://doi.org/10.1016/j.jfluchem.2016.11.001

    Article  CAS  Google Scholar 

  106. Salimian S, Zadhoush A, Naeimirad M, Kotek R, Ramakrishna S (2018) A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites. Polym Compos 39:3383. https://doi.org/10.1002/pc.24412

    Article  CAS  Google Scholar 

  107. Joseph AM, Nagendra B, Shaiju P, Surendran KP, Gowd EB (2018) Aerogels of hierarchically porous syndiotactic polystyrene with a dielectric constant near to air. J Mater Chem C 6:360. https://doi.org/10.1039/c7tc05102f

    Article  CAS  Google Scholar 

  108. Wu LY, Gao L, Li JM et al (2023) Ultralight, super-compression, and hydrophobic nanofibrous aerogels from cellulose acetate/polyethylene oxide nanofibers for efficient and recyclable oil absorption. New J Chem 47:7930. https://doi.org/10.1039/d3nj00521f

    Article  CAS  Google Scholar 

  109. Nakanishi Y, Hara Y, Sakuma W, Saito T, Nakanishi K, Kanamori K (2020) Colorless transparent melamine-formaldehyde aerogels for thermal insulation. ACS Appl Nano Mater 3:49. https://doi.org/10.1021/acsanm.9b02275

    Article  CAS  Google Scholar 

  110. Sai HZ, Fu R, Xiang JH, Guan YL, Zhang FS (2018) Fabrication of elastic silica-bacterial cellulose composite aerogels with nanoscale interpenetrating network by ultrafast evaporative drying. Compos Sci Technol 155:72. https://doi.org/10.1016/j.compscitech.2017.11.004

    Article  CAS  Google Scholar 

  111. Guerrero-Alburquerque N, Zhao SY, Adilien N, Koebel MM, Lattuada M, Malfait WJ (2020) Strong, machinable, and insulating chitosan-urea aerogels: toward ambient pressure drying of biopolymer aerogel monoliths. ACS Appl Mater Interfaces 12:22037. https://doi.org/10.1021/acsami.0c03047

    Article  PubMed  CAS  Google Scholar 

  112. Chaudary A, Patoary MK, Zhang ML, Chudhary T, Farooq A, Liu LF (2022) Structurally integrated thermal management of isotropic and directionally ice-templated nanocellulose/chitosan aerogels. Cellulose 29:8265. https://doi.org/10.1007/s10570-022-04781-6

    Article  CAS  Google Scholar 

  113. Wang ZJ, Liu FX, Wei W, Dong C, Li ZY, Liu ZJ (2023) Influence of supercritical fluid parameters on the polyimide aerogels in a high-efficiency supercritical drying process. Polymer 268:125713. https://doi.org/10.1016/j.polymer.2023.125713

    Article  CAS  Google Scholar 

  114. Brinker CJ (1999) New directions in sol-gel processing: evaporation-induced self-assembly of porous and composite media. Abstr Pap Am Chem Soc 218:U734

    Google Scholar 

  115. Brinker CJ (1994) Sol–gel processing of silica. Colloid Chem Silica 234:361

    Article  CAS  Google Scholar 

  116. Mazrouei-Sebdani Z, Khoddami A, Hadadzadeh H, Zarrebini M, Karimi A, Shams-Ghahfarokhi F (2016) The effect of the nano-structured aerogel powder on the structural parameters, water repellency, and water vapor/air permeability of a fibrous polyester material. Mater Chem Phys 177:99. https://doi.org/10.1016/j.matchemphys.2016.04.002

    Article  CAS  Google Scholar 

  117. Zhang ZD, Scherer GW (2017) Supercritical drying of cementitious materials. Cem Concr Res 99:137. https://doi.org/10.1016/j.cemconres.2017.05.005

    Article  CAS  Google Scholar 

  118. Yuan CF, Wang DG, Zhang YJ, Li K, Ding J (2023) Research progress on preparation, modification, and application of phenolic aerogel. Nanotechnol Rev 12(20230):109. https://doi.org/10.1515/ntrev-2023-0109

    Article  CAS  Google Scholar 

  119. Pajonk GM, Repellinlacroix M, Abouarnadasse S, Chaouki J, Klvana D (1990) From sol–gel to aerogels and cryogels. J Non-Cryst Solids 121:66. https://doi.org/10.1016/0022-3093(90)90106-V

    Article  CAS  Google Scholar 

  120. Simón-Herrero C, Caminero-Huertas S, Romero, A et al (2016) Effects of freeze-drying conditions on aerogel properties. J Mater Sci 51:8977. https://doi.org/10.1007/s10853-016-0148-5

    Article  CAS  Google Scholar 

  121. Tang X, Yan X (2017) Acoustic energy absorption properties of fibrous materials: a review. Compos A Appl Sci Manuf 101:360. https://doi.org/10.1016/j.compositesa.2017.07.002

    Article  CAS  Google Scholar 

  122. Kim BS, Choi J, Park YS, Qian YJ, Shim SE (2022) Semi-rigid polyurethane foam and polymethylsilsesquioxane aerogel composite for thermal insulation and sound absorption. Macromol Res 30:245. https://doi.org/10.1007/s13233-022-0026-8

    Article  CAS  Google Scholar 

  123. Ma WJ, Jiang ZC, Lu T, Xiong RH, Huang CB (2022) Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chem Eng J 430:132989. https://doi.org/10.1016/j.cej.2021.132989

    Article  CAS  Google Scholar 

  124. Gu HB, Gao C, Zhou XM, Du A, Naik N, Guo ZH (2021) Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv Compos Hybrid Mater 4:459. https://doi.org/10.1007/s42114-021-00289-y

    Article  CAS  Google Scholar 

  125. Shao H, Zhao S, Fei Z et al (2023) Unidirectional infiltrated PI/SiO2 composite aerogels with a confined reinforcing strategy for integrated thermal and acoustic insulation. Compos Part B Eng 266:111002. https://doi.org/10.1016/j.compositesb.2023.111002

    Article  CAS  Google Scholar 

  126. Zhu G, Xu H, Dufresne A, Lin N (2018) High-adsorption, self-extinguishing, thermal, and acoustic-resistance aerogels based on organic and inorganic waste valorization from cellulose nanocrystals and red mud. ACS Sustain Chem Eng 6:7168. https://doi.org/10.1021/acssuschemeng.8b01244

    Article  CAS  Google Scholar 

  127. Fan S-T, Zhang Y, Tan M et al (2023) Multifunctional elastic aerogels of nanofibrous metal−organic framework for thermal insulation and broadband low-frequency sound absorption. Compos Sci Technol 242:110183. https://doi.org/10.1016/j.compscitech.2023.110183

    Article  Google Scholar 

  128. Lou CW, Zhou XY, Liao XL et al (2021) Sustainable cellulose-based aerogels fabricated by directional freeze-drying as excellent sound-absorption materials. J Mater Sci 56:18762. https://doi.org/10.1007/s10853-021-06498-6

    Article  CAS  Google Scholar 

  129. Zou FX, Cucharero J, Dong YJ et al (2023) Maximizing sound absorption, thermal insulation, and mechanical strength of anisotropic pectin cryogels. Chem Eng J 462:142236. https://doi.org/10.1016/j.cej.2023.142236

    Article  CAS  Google Scholar 

  130. Zong D, Bai W, Geng M et al (2022) Bubble templated flexible ceramic nanofiber aerogels with cascaded resonant cavities for high-temperature noise absorption. ACS Nano 16:13740. https://doi.org/10.1021/acsnano.2c06011

    Article  PubMed  CAS  Google Scholar 

  131. Gui Y, Fei Z, Zhao S et al (2023) High-strength and multifunctional honeycomb polyimide aerogel fabricated by a freeze casting-assisted extrusion printing and building block-assembly strategy for sound absorbing metamaterials. Addit Manuf 77:103799. https://doi.org/10.1016/j.addma.2023.103799

    Article  CAS  Google Scholar 

  132. Wang WQ, Zhou YK, Li Y, Hao T (2019) Aerogels-filled Helmholtz resonators for enhanced low-frequency sound absorption. J Supercrit Fluids 150:103. https://doi.org/10.1016/j.supflu.2019.04.011

    Article  CAS  Google Scholar 

  133. Palacio O, Malfait WJ, Michel S, Barbezat M, Mazrouei-Sebdani Z (2023) Vibration and structure-borne sound isolation properties of silica aerogels. Constr Build Mater 399:132568. https://doi.org/10.1016/j.conbuildmat.2023.132568

    Article  CAS  Google Scholar 

  134. Krishnan VG, Joseph AM, Kuzhichalil Peethambharan S, Gowd EB (2021) Nanoporous crystalline aerogels of syndiotactic polystyrene: polymorphism, dielectric, thermal, and acoustic properties. Macromolecules 54:10605. https://doi.org/10.1021/acs.macromol.1c01555

    Article  CAS  Google Scholar 

  135. Jiang X, Zhang J, You F et al (2022) Chitosan/clay aerogel: microstructural evolution, flame resistance and sound absorption. Appl Clay Sci 228:106624. https://doi.org/10.1016/j.clay.2022.106624

    Article  CAS  Google Scholar 

  136. Long LY, Weng YX, Wang YZ (2018) Cellulose aerogels: synthesis, applications, and prospects. Polymers (Basel) 10:623. https://doi.org/10.3390/polym10060623

    Article  PubMed  CAS  Google Scholar 

  137. Shahid AM, Sangeetha UK, Sahoo SK (2023) Facile fabrication of green and sustainable functionalized Bombax ceiba L. wood based aerogel for multifunctional applications. Ind Crop Prod 202:117076. https://doi.org/10.1016/j.indcrop.2023.117076

    Article  CAS  Google Scholar 

  138. Wang C, Xiong Y, Fan B et al (2016) Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal insulation. Sci Rep 6:32383. https://doi.org/10.1038/srep32383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Yan P, Zhou B, Du A (2014) Synthesis of polyimide cross-linked silica aerogels with good acoustic performance. RSC Adv 4:58252. https://doi.org/10.1039/c4ra08846h

    Article  CAS  Google Scholar 

  140. Yang MM, Chen ZF, Yang LX et al (2023) Hierarchically porous networks structure based on flexible SiO2 nanofibrous aerogel with excellent low frequency noise absorption. Ceram Int 49:301. https://doi.org/10.1016/j.ceramint.2022.08.344

    Article  CAS  Google Scholar 

  141. Si Y, Yu JY, Tang XM, Ge JL, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802. https://doi.org/10.1038/ncomms6802

    Article  PubMed  CAS  Google Scholar 

  142. Cao LT, Shan HR, Zong DD et al (2022) Fire-resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low-frequency noise reduction. Nano Lett 22:1609. https://doi.org/10.1021/acs.nanolett.1c04532

    Article  PubMed  CAS  Google Scholar 

  143. Cao LT, Si Y, Wu YY, Wang XQ, Yu JY, Ding B (2019) Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale 11:2289. https://doi.org/10.1039/c8nr09288e

    Article  PubMed  CAS  Google Scholar 

  144. Chen Z, Guan MD, Cheng YW et al (2023) Boehmite-enhanced poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile (PVDF-HFP/PAN) coaxial electrospun nanofiber hybrid membrane: a superior separator for lithium-ion batteries. Adv Compos Hybrid Mater 6:219. https://doi.org/10.1007/s42114-023-00794-2

    Article  CAS  Google Scholar 

  145. Shen SY, Zhang Y, Guo W et al (2024) Hierarchically piezoelectric aerogels for efficient sound absorption and machine-learning-assisted sensing. Adv Func Mater 34:2406773. https://doi.org/10.1002/adfm.202406773

    Article  CAS  Google Scholar 

  146. Wang G, Yuan P, Ma B, Yuan W, Luo J (2020) Hierarchically structured M13 phage aerogel for enhanced sound-absorption. Macromol Mater Eng 305:2000452. https://doi.org/10.1002/mame.202000452

    Article  CAS  Google Scholar 

  147. Wang G, Ma BH, Yuan WZ, Luo J (2023) Acoustic and mechanical characterization of a novel polypropylene fibers based composite aerogel. Mater Lett 334:133696. https://doi.org/10.1016/j.matlet.2022.133696

    Article  CAS  Google Scholar 

  148. Koh HW, Le DK, Ng GN et al (2018) Advanced recycled polyethylene terephthalate aerogels from plastic waste for acoustic and thermal insulation applications. Gels 4:43. https://doi.org/10.3390/gels4020043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Sun F, Bankslee P, Peng H (1993) Sound-absorption in an anisotropic periodically layered fluid-saturated porous-medium. Appl Acoust 39:65. https://doi.org/10.1016/0003-682x(93)90030-A

    Article  Google Scholar 

  150. Amares ESS, Hong TW, Durairaj R, Hamid HSHB (2017) A review: characteristics of noise absorption material. J Phys Conf Ser 908:012005. https://doi.org/10.1088/1742-6596/908/1/012005

    Article  Google Scholar 

  151. Tong ZW, Yan BX, Zhang BJ, Xu H, Li XL, Ji HM (2022) Preparation and textural evolution: From organosilane aerogel to SiOC aerogels. Ceram Int 48:5468. https://doi.org/10.1016/j.ceramint.2021.11.091

    Article  CAS  Google Scholar 

  152. Groult S, Budtova T (2018) Tuning structure and properties of pectin aerogels. Eur Polymer J 108:250. https://doi.org/10.1016/j.eurpolymj.2018.08.048

    Article  CAS  Google Scholar 

  153. Groult S, Buwalda S, Budtova T (2021) Pectin hydrogels, aerogels, cryogels and xerogels: influence of drying on structural and release properties. Eur Polymer J 149:110386. https://doi.org/10.1016/j.eurpolymj.2021.110386

    Article  CAS  Google Scholar 

  154. Liao W, Zhao HB, Liu ZG, Xu SM, Wang YZ (2019) On controlling aerogel microstructure by freeze casting. Compos Part B Eng 173:107036. https://doi.org/10.1016/j.compositesb.2019.107036

    Article  CAS  Google Scholar 

  155. Yu ZL, Qin B, Ma ZY et al (2019) Superelastic hard carbon nanofiber aerogels. Adv Mater 31:1900651. https://doi.org/10.1002/adma.201900651

    Article  CAS  Google Scholar 

  156. Pirzada T, Ashrafi Z, Xie WY, Khan SA (2020) Cellulose silica hybrid nanofiber aerogels: from sol–gel electrospun nanofibers to multifunctional aerogels. Adv Funct Mater 30:1907359. https://doi.org/10.1002/adfm.201907359

    Article  CAS  Google Scholar 

  157. Shao HL, Fei ZF, Li XH et al (2024) Enhanced sound absorption property of polyimide aerogels by the incorporation of macropores. Mater Lett 366:136497. https://doi.org/10.1016/j.matlet.2024.136497

    Article  CAS  Google Scholar 

  158. Zhang XX, Zheng QT, Chen YJ et al (2024) A controllable foaming approach for the fabrication of “rattan-like” graphene-based composite aerogel with desirable microwave absorption capacity. Compos Sci Technol 250:110532. https://doi.org/10.1016/j.compscitech.2024.110532

    Article  CAS  Google Scholar 

  159. Dong S, Duan YY, Chen XY et al (2024) Recent advances in preparation and structure of polyurethane porous materials for sound absorbing application. Macromol Rapid Commun 45:2400108. https://doi.org/10.1002/marc.202400108

    Article  CAS  Google Scholar 

  160. Hamamizadeh E, Mahabadi HA, Khavanin A (2022) Investigating the mechanical, morphological, and acoustic properties of the phenolic aerogel/flexible polyurethane foam composite. J Polym Environ 30:2483. https://doi.org/10.1007/s10924-021-02302-3

    Article  CAS  Google Scholar 

  161. Chen YM, Zhou LJ, Chen L et al (2019) Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26:6653. https://doi.org/10.1007/s10570-019-02557-z

    Article  CAS  Google Scholar 

  162. Ruan J-Q, Xie K-Y, Li Z et al (2023) Multifunctional ultralight nanocellulose aerogels as excellent broadband acoustic absorption materials. J Mater Sci 58:971. https://doi.org/10.1007/s10853-022-08118-3

    Article  CAS  Google Scholar 

  163. Tang XN, Yan X (2017) Multi-layer fibrous structures for noise reduction. J Text Inst 108:2096. https://doi.org/10.1080/00405000.2017.1315793

    Article  Google Scholar 

  164. Forest L, Gibiat V, Hooley A (2001) Impedance matching and acoustic absorption in granular layers of silica aerogels. J Non-Cryst Solids 285:230. https://doi.org/10.1016/S0022-3093(01)00458-6

    Article  CAS  Google Scholar 

  165. Dasyam A, Xue YT, Bolton JS, Sharma B (2022) Effect of particle size on sound absorption behavior of granular aerogel agglomerates. J Non-Cryst Solids 598:121942. https://doi.org/10.1016/j.jnoncrysol.2022.121942

    Article  CAS  Google Scholar 

  166. Sachithanadam M, Joshi SC (2016) Effect of granule sizes on acoustic properties of protein-based silica aerogel composites via novel inferential transmission loss method. Gels 2:11. https://doi.org/10.3390/gels2010011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Buratti C, Merli F, Moretti E (2017) Aerogel-based materials for building applications: influence of granule size on thermal and acoustic performance. Energy Build 152:472. https://doi.org/10.1016/j.enbuild.2017.07.071

    Article  Google Scholar 

  168. Zong D, Bai W, Yin X, Yu J, Zhang S, Ding B (2023) Gradient pore structured elastic ceramic nanofiber aerogels with cellulose nanonets for noise absorption. Adv Func Mater 33:2301870. https://doi.org/10.1002/adfm.202301870

    Article  CAS  Google Scholar 

  169. Zhou Y, Li L, Yang C et al (2023) Highly efficient thermo-acoustic insulating aerogels enabled by resonant cavity engineering. ACS Nano 17:14883. https://doi.org/10.1021/acsnano.3c03347

    Article  PubMed  CAS  Google Scholar 

  170. Yang LK, Chua JW, Li XW et al (2023) Superior broadband sound absorption in hierarchical ultralight graphene oxide aerogels achieved through emulsion freeze-casting. Chem Eng J 469:143896. https://doi.org/10.1016/j.cej.2023.143896

    Article  CAS  Google Scholar 

  171. Cao LT, Yu X, Yin X, Si Y, Yu JY, Ding B (2021) Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption. J Colloid Interface Sci 597:21. https://doi.org/10.1016/j.jcis.2021.03.172

    Article  PubMed  CAS  Google Scholar 

  172. Eskandari N, Motahari S, Atoufi Z, Hashemi Motlagh G, Najafi M (2017) Thermal, mechanical, and acoustic properties of silica-aerogel/UPVC composites. J Appl Polym Sci 134:44685. https://doi.org/10.1002/app.44685

    Article  CAS  Google Scholar 

  173. Yang T, Xiong X, Venkataraman M et al (2023) Investigation on sound absorption properties of aerogel/polymer nonwovens. J Text Inst 110:196. https://doi.org/10.1080/00405000.2018.1472540

    Article  CAS  Google Scholar 

  174. Mazrouei-Sebdani Z, Khoddami A, Hadadzadeh H, Zarrebini M (2015) Synthesis and performance evaluation of the aerogel-filled PET nanofiber assemblies prepared by electro-spinning. RSC Adv 5:12830. https://doi.org/10.1039/c4ra15297b

    Article  CAS  Google Scholar 

  175. Talebi Z, Soltani P, Habibi N, Latifi F (2019) Silica aerogel/polyester blankets for efficient sound absorption in buildings. Constr Build Mater 220:76. https://doi.org/10.1016/j.conbuildmat.2019.06.031

    Article  CAS  Google Scholar 

  176. Motahari S, Javadi H, Motahari A (2015) Silica-aerogel cotton composites as sound absorber. J Mater Civ Eng 27:04014237. https://doi.org/10.1061/(Asce)Mt.1943-5533.0001208

    Article  Google Scholar 

  177. Seraji AA, Aghvami-Panah M, Shams-Ghahfarokhi F (2022) Evaluation of ultimate engineering properties of polytetrafluoroethylene/carbon-aerogel/glass fiber porous composite. Colloids Surfaces A-Physicochem Eng Asp 647:128975. https://doi.org/10.1016/j.colsurfa.2022.128975

    Article  CAS  Google Scholar 

  178. Dourbash A, Buratti C, Belloni E, Motahari S (2017) Preparation and characterization of polyurethane/silica aerogel nanocomposite materials. J Appl Polym Sci 134:44521. https://doi.org/10.1002/app.44521

    Article  CAS  Google Scholar 

  179. Malakooti S, Churu HG, Lee A et al (2018) Sound transmission loss enhancement in an inorganic-organic laminated wall panel using multifunctional low-density nanoporous polyurea aerogels: experiment and modeling. Adv Eng Mater 20:1700937. https://doi.org/10.1002/adem.201700937

    Article  CAS  Google Scholar 

  180. Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustainability 6:5839. https://doi.org/10.3390/su6095839

    Article  Google Scholar 

  181. Bergmann Becker PF, Effting C, Schackow A (2022) Lightweight thermal insulating coating mortars with aerogel, EPS, and vermiculite for energy conservation in buildings. Cem Concr Compos 125:104283. https://doi.org/10.1016/j.cemconcomp.2021.104283

    Article  CAS  Google Scholar 

  182. Cotana F, Pisello AL, Moretti E, Buratti C (2014) Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance. Build Environ 81:92. https://doi.org/10.1016/j.buildenv.2014.06.014

    Article  Google Scholar 

  183. Buratti C, Moretti E (2012) Experimental performance evaluation of aerogel glazing systems. Appl Energy 97:430. https://doi.org/10.1016/j.apenergy.2011.12.055

    Article  CAS  Google Scholar 

  184. Satterwhite J (2009) Case studies and installation data on the acoustical properties of a new class of translucent, lightweight insulation material from NASA called aerogel. J Acoust Soc Am 125:2503. https://doi.org/10.1121/1.4783390

    Article  Google Scholar 

  185. Xiang N, Whitney MA, Malakooti S, Churu HG, Leventis N, Lu H (2018) Correlating dynamical properties of organic aerogel with increased sound insulation of sandwich wallboard systems. J Acoust Soc Am 144:1754. https://doi.org/10.1121/1.5067770

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51705113), the Natural Science Foundation of Jiangsu Province (Grant No. BK20191192), Guiding Program of China Textile Industry Federation (Grant No. 2022035), Core technology research projects of Wuhu (2022hg16).

Author information

Authors and Affiliations

Authors

Contributions

Yuanlong Meng: Writing-original draft preparation. Jieyu Xue: Picture curation. Ruonan Han: Picture curation. Tengzhou Xu: Picture curation. Yuanrong Ding: Picture curation and edit. Yong Yang: Article review and edit.

Corresponding authors

Correspondence to Yuanrong Ding or Yong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Xue, J., Han, R. et al. Preparation, design, structure and application of aerogel-based materials for noise control. J Mater Sci 60, 383–413 (2025). https://doi.org/10.1007/s10853-024-10533-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10533-7

Navigation