Abstract
The imminent threat of noise pollution requires the development of efficient acoustic materials. Aerogels have been considered as a promising noise reduction materials due to their special porous structure, lightweight and acoustic delay characteristics. Currently, a variety of aerogels are investigated on materials, fabrication processes and structural design to explore the feasibility of aerogels as acoustic materials. This paper explains the acoustic mechanism for noise control, describes the mathematical models of sound absorption and insulation, as well as the preparation process of aerogels, and finally reviews the research progress and building application of aerogels in noise control. The future development of aerogels in noise control is also discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- α 0 :
-
Sound absorption coefficient
- E i :
-
Total incident sound energy
- E t :
-
Transmitted sound energy
- Z 0 :
-
Characteristic impedance
- l :
-
Thickness
- \(c_{0}\) :
-
Sound velocity
- σ :
-
Airflow resistivity
- ω :
-
The angular frequency
- X :
-
Imaginary part of characteristic impedance
- \(\beta\) :
-
The imaginary part of propagation coefficient
- \(\widetilde{{k_{eq} }}\) :
-
Dynamic bulk modulus
- \(\widetilde{\alpha \left( \omega \right)}\) :
-
The dynamic tortuosity
- \(\nu\) :
-
The kinematic viscosity
- Λ :
-
The viscous characteristic length
- \(P_{0}\) :
-
The static pressure
- P r :
-
The Prandtl number
- \(\Lambda^{\prime }\) :
-
The thermal characteristic
- \(\tau\) :
-
The ratio of the transmitted intensity to the incident intensity
- M :
-
The mass per unit area of the material
- f Co :
-
Coincidence frequency
- μ :
-
Poisson’s ratio
- E α :
-
Absorbed sound energy
- E r :
-
Reflected sound energy
- \(Z\) :
-
Surface characteristic impedance
- γ :
-
Propagation coefficient
- \(\rho_{0}\) :
-
Air density
- \(f\) :
-
Frequency
- \(j\) :
-
The complex number
- R :
-
The real part of characteristic impedance
- \(\alpha\) :
-
The real part of propagation coefficient
- \(\widetilde{{\rho_{eq} }}\) :
-
Dynamic density
- Ψ :
-
The open porosity
- α ∞ :
-
The dynamic tortuosity
- \(k_{0}\) :
-
The static viscous permeability
- \(k\) :
-
The specific heat ratio
- \(\widetilde{{\alpha^{\prime } \left( w \right)}}\) :
-
The thermal tortuosity
- \(k_{0}^{\prime }\) :
-
The static thermal permeability
- STL :
-
Sound Transmission Loss
- f R :
-
The resonance frequency
- \(\theta\) :
-
The angle of incidence
- \(\rho_{m}\) :
-
The density of the material
- E :
-
Young’s modulus
References
Hong A, Kim B, Widener M (2019) Noise and the city: leveraging crowdsourced big data to examine the spatio-temporal relationship between urban development and noise annoyance. Environ Plan B Urban Anal City Sci 47:1201. https://doi.org/10.1177/2399808318821112
Welch D, Shepherd D, Dirks KN, Reddy R (2023) Health effects of transport noise. Transp Rev 43:1190. https://doi.org/10.1080/01441647.2023.2206168
Slabbekoorn H (2019) Noise pollution. Curr Biol 29:R957. https://doi.org/10.1016/j.cub.2019.07.018
Mannucci PM, Ancona C (2021) Noise and air pollution as triggers of hypertension. Eur Heart J 42:2085. https://doi.org/10.1093/eurheartj/ehab104
Gupta A, Gupta A, Jain K, Gupta S (2018) Noise Pollution and Impact on Children Health. Indian J Pediatr 85:300. https://doi.org/10.1007/s12098-017-2579-7
Gao NS, Zhang ZC, Deng J, Guo XY, Cheng BZ, Hou H (2022) Acoustic metamaterials for noise reduction: a review. Adv Mater Technol 7:2100698. https://doi.org/10.1002/admt.202100698
Pan J, Paurobally R, Qiu XJ (2016) Active noise control in workplaces. Acoust Aust 44:45. https://doi.org/10.1007/s40857-015-0035-2
Lam B, Gan WS, Shi DY, Nishimura M, Elliott S (2021) Ten questions concerning active noise control in the built environment. Build Environ 200:107928. https://doi.org/10.1016/j.buildenv.2021.107928
Cops MJ, McDaniel JG, Magliula EA, Bamford DJ, Bliefnick J (2020) Measurement and analysis of sound absorption by a composite foam. Appl Acoust 160:107138. https://doi.org/10.1016/j.apacoust.2019.107138
Hu J, Li X, Han R et al (2023) Effect of papermaking technique parameters on air permeability and sound insulation of glass fiber felt. J Ind Text 53:15280837231157266. https://doi.org/10.1177/15280837231157266
Isaac CW, Pawelczyk M, Wrona S (2020) Comparative study of sound transmission losses of sandwich composite double panel walls. Appl Sci 10:1543. https://doi.org/10.3390/app10041543
Ge YM, Xue JY, Liu LP, Yang Y (2023) Preparation and sound insulation of honeycomb composite structures filled with glass fiber. Polym Compos 45(2):1649–1663. https://doi.org/10.1002/pc.27879
Yang T, Hu L, Xiong X et al (2020) Sound absorption properties of natural fibers: a review. Sustainability 12(20):8477. https://doi.org/10.3390/su12208477
Cao L, Fu Q, Si Y, Ding B, Yu J (2018) Porous materials for sound absorption. Compos Commun 10:25. https://doi.org/10.1016/j.coco.2018.05.001
Kalauni K, Pawar SJ (2019) A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J Porous Mater 26:1795. https://doi.org/10.1007/s10934-019-00774-2
Cao X, Liu Y, Sun Q, Che T, Wu C, Yang Y (2024) CNTs/PVA composite aerogel for efficient microwave and acoustic absorption. Compos Struct 329:117805. https://doi.org/10.1016/j.compstruct.2023.117805
Cummer SA, Christensen J, Alù A (2016) Controlling sound with acoustic metamaterials. Nat Rev Mater 1:16001. https://doi.org/10.1038/natrevmats.2016.1
Gao N, Zhang Z, Deng J, Guo X, Cheng B, Hou H (2022) Acoustic metamaterials for noise reduction: a review. Adv Mater Technol 7(6):2100698. https://doi.org/10.1002/admt.202100698
Xue JY, Han RN, Li YM, Zhang JX, Liu JX, Yang Y (2023) Advances in multiple reinforcement strategies and applications for silica aerogel. J Mater Sci 58:14255. https://doi.org/10.1007/s10853-023-08945-y
Keshavarz L, Ghaani MR, MacElroy JMD, English NJ (2021) A comprehensive review on the application of aerogels in CO2-adsorption: materials and characterisation. Chem Eng J 412:128604. https://doi.org/10.1016/j.cej.2021.128604
Gan GQ, Li XY, Fan SY et al (2019) Carbon aerogels for environmental clean-up. Eur J Inorg Chem 2019(27):3126–3141. https://doi.org/10.1002/ejic.201801512
Gibiat V, Lefeuvre O, Woignier T, Pelous J, Phalippou J (1995) Acoustic properties and potential applications of silica aerogels. J Non-Cryst Solids 186:244. https://doi.org/10.1016/0022-3093(95)00049-6
Mazrouei-Sebdani Z, Begum H, Schoenwald S, Horoshenkov KV, Malfait WJ (2021) A review on silica aerogel-based materials for acoustic applications. J Non-Cryst Solids 562:120770. https://doi.org/10.1016/j.jnoncrysol.2021.120770
Xiao Q, Xue J, Meng Y, Ding Y, Yang Y (2024) Lightweight and hydrophobic silica aerogel/glass fiber composites with hierarchical networks for outstanding thermal and acoustic insulation. Ceram Int 50(24):54473–54481. https://doi.org/10.1016/j.ceramint.2024.10.303
Fahy FJ (2003) Foundations of engineering acoustics. Elsevier
Fediuk R, Amran M, Vatin N, Vasilev Y, Lesovik V, Ozbakkaloglu T (2021) Acoustic properties of innovative concretes: a review. Materials (Basel) 14(2):398. https://doi.org/10.3390/ma14020398
Cox TJ, D’Antonio P (2005) Acoustic absorbers and diffusers: theory, design, and application. J Acoust Soc Am 117(3):988. https://doi.org/10.1121/1.1861060
Zwikker C, Van den Eijk J, Kosten CW (1943) Absorption of sound by porous material V. Physica 10:239. https://doi.org/10.1016/S0031-8914(43)90040-0
Delany ENBME (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust 3:105. https://doi.org/10.1016/0003-682x(70)90031-9
Meric C, Erol H, Özkan A (2016) On the sound absorption performance of a felt sound absorber. Appl Acoust 114:275. https://doi.org/10.1016/j.apacoust.2016.08.003
Wang YH, Zhang CC, Ren LQ, Ichchou M, Galland MA, Bareille O (2014) Sound absorption of a new bionic multi-layer absorber. Compos Struct 108:400. https://doi.org/10.1016/j.compstruct.2013.09.029
Miki Y (1990) Acoustical properties of porous materials—modifications of Delany–Bazley models. J Acoust Soc Jpn 11:19
Komatsu T (2008) Improvement of the Delany–Bazley and Miki models for fibrous sound-absorbing materials. Acoust Sci Technol 29(2):121–129. https://doi.org/10.1250/ast.29.121
Chevillotte F, Perrot C (2017) Effect of the three-dimensional microstructure on the sound absorption of foams: a parametric study. J Acoust Soc Am 142:1130. https://doi.org/10.1121/1.4999058
Johnson DL, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous-media. J Fluid Mech 176:379. https://doi.org/10.1017/S0022112087000727
Ricciardi P, Belloni E, Cotana F (2014) Innovative panels with recycled materials: thermal and acoustic performance and life cycle assessment. Appl Energy 134:150. https://doi.org/10.1016/j.apenergy.2014.07.112
Arenas JP, Crocker MJ (2010) Recent trends in porous sound-absorbing materials. Sound Vib 44:12
Gu JT, Tang YH, Wang XL, Huang ZY (2022) Laminated plate-type acoustic metamaterials with Willis coupling effects for broadband low-frequency sound insulation. Compos Struct 292:115689. https://doi.org/10.1016/j.compstruct.2022.115689
Barron RF (2001) Industrial noise control and acoustics. CRC Press
Zhao J, Wang XM, Chang JM, Yao Y, Cui Q (2010) Sound insulation property of wood-waste tire rubber composite. Compos Sci Technol 70:2033. https://doi.org/10.1016/j.compscitech.2010.03.015
Xue JY, Han RA, Ge YM, Liu LP, Yang Y (2024) Preparation, mechanical, acoustic and thermal properties of silica composite aerogel using wet-laid glass fiber felt as scaffold. Compos Part A Appl Sci Manuf 179:108058. https://doi.org/10.1016/j.compositesa.2024.108058
Talebitooti R, Gohari HD, Zarastvand MR (2017) Multi objective optimization of sound transmission across laminated composite cylindrical shell lined with porous core investigating Non-dominated Sorting Genetic Algorithm. Aerosp Sci Technol 69:269. https://doi.org/10.1016/j.ast.2017.06.008
Lee CM, Xu Y (2009) A modified transfer matrix method for prediction of transmission loss of multilayer acoustic materials. J Sound Vib 326:290. https://doi.org/10.1016/j.jsv.2009.04.037
Yang Y, Chen Z, Chen ZF, Fu RL, Li YF (2015) Sound insulation properties of sandwich structures on glass fiber felts. Fib Polym 16:1568. https://doi.org/10.1007/s12221-015-5200-6
Saunders H (1984) Engineering principles of acoustics noise and vibration control—Reynolds, DD. J Vib Acoust Stress Reliab Des Trans ASME 106:320
Tadeu AJB, Mateus DMR (2001) Sound transmission through single, double and triple glazing. Exp Eval Appl Acoust 62:307. https://doi.org/10.1016/S0003-682x(00)00032-3
Yang Y, Li BB, Chen ZF et al (2016) Acoustic properties of glass fiber assembly-filled honeycomb sandwich panels. Compos Part B Eng 96:281. https://doi.org/10.1016/j.compositesb.2016.04.046
Hrubesh LW, Poco JF (1995) Thin aerogel films for optical, thermal, acoustic and electronic applications. J Non-Cryst Solids 188:46. https://doi.org/10.1016/0022-3093(95)00028-3
Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335. https://doi.org/10.1016/S0022-3093(98)00135-5
Higashitani S, Miura M, Yamamoto M, Nagai K (2005) Sound propagation in superfluid He in aerogel. J Phys Chem Solids 66:1334. https://doi.org/10.1016/j.jpcs.2005.05.007
Herman T, Beamish JR (2005) Low frequency acoustic resonance studies of the liquid-vapor transition in silica aerogel. J Low Temp Phys 141:193. https://doi.org/10.1007/s10909-005-8537-1
Schlief T, Gross J, Fricke J (1992) Ultrasonic attenuation in silica aerogels. J Non-Cryst Solids 145:223. https://doi.org/10.1016/S0022-3093(05)80460-0
Xie Y, Zhou B, Du A (2021) Slow-sound propagation in aerogel-inspired hybrid structure with backbone and dangling branch. Adv Compos Hybrid Mater 4:248. https://doi.org/10.1007/s42114-021-00234-z
Ghimire S, Sabri F (2023) K-wave modelling of ultrasound wave propagation in aerogels and the effect of physical parameters on attenuation and loss. Appl Phys A 129:286. https://doi.org/10.1007/s00339-023-06586-1
John BH, Conroy FT (1999) Microscale thermal relaxation during acoustic propagation in aerogel and other porous media. Microscale Thermophys Eng 3:199. https://doi.org/10.1080/108939599199756
Forest L, Gibiat V, Woignier T (1998) Blot’s theory of acoustic propagation in porous media applied to aerogels and alcogels. J Non-Cryst Solids 225:287. https://doi.org/10.1016/S0022-3093(98)00325-1
Caponi S, Fontana A, Montagna M et al (2003) Acoustic attenuation in silica porous systems. J Non-Cryst Solids 322:29. https://doi.org/10.1016/S0022-3093(03)00167-4
Leão SG, Monteiro EC, dos Reis MO, Mapa LPP, Avila AF (2022) Noise attenuation inside airplane cabin: preliminary results on combined porous/nano-fibrous materials. Appl Acoust 199:109009. https://doi.org/10.1016/j.apacoust.2022.109009
Malakooti S, Churu HG, Lee A et al (2017) Sound insulation properties in low-density, mechanically strong and ductile nanoporous polyurea aerogels. J Non-Cryst Solids 476:36. https://doi.org/10.1016/j.jnoncrysol.2017.09.005
Wang G, Luo J, Yuan W, Ma B (2023) Investigation on low frequency acoustic characteristics of parallel-arranged microperforated panel with aerogel-filled back cavities. Appl Acoust 207:109347. https://doi.org/10.1016/j.apacoust.2023.109347
Budtova T, Lokki T, Malakooti S et al (2022) Acoustic properties of aerogels: current status and prospects. Adv Eng Mater 25(6):2201137. https://doi.org/10.1002/adem.202201137
Mohammadi B, Ershad-Langroudi A, Moradi G, Safaiyan A, Habibi P (2022) Mechanical and sound absorption properties of open-cell polyurethane foams modified with rock wool fiber. J Build Eng 48:103872. https://doi.org/10.1016/j.jobe.2021.103872
I British Standards, S International Organization for, S European Committee for (2001) Acoustics: determination of sound absorption coefficient and impedance in impedances tubes. Part 1. Method using standing wave ratio. British Standards Institution, London
I British Standards, S International Organization for, S European Committee for (2002) Acoustics: determination of sound absorption coefficient and impedance in impedances tubes. Part 2: Transfer-function method. British Standards Institution, London
Lin MD, Tsai KT, Su BS (2009) Estimating the sound absorption coefficients of perforated wooden panels by using artificial neural networks. Appl Acoust 70:31. https://doi.org/10.1016/j.apacoust.2008.02.001
Cops A, Vanhaecht J, Leppens K (1995) Sound-absorption in a reverberation room—causes of discrepancies on measurement results. Appl Acoust 46:215. https://doi.org/10.1016/0003-682x(95)00029-9
CN Standards (2008) Acoustics—measurement of sound absorption in a reverberation room, Taiwan
Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. ASTM International
S International Organization for (1985) Acoustics—measurement of sound absorption in a reverberation room. ISO, S.l.
Tang Y, Chuang X-J, Ghazali R (2022) Tuning of estimated sound absorption coefficient of materials of reverberation room method. Shock Vib 2022:1. https://doi.org/10.1155/2022/5192984
Ziegler C, Wolf A, Liu W, Herrmann AK, Gaponik N, Eychmuller A (2017) Modern inorganic aerogels. Angew Chem Int Ed Engl 56:13200. https://doi.org/10.1002/anie.201611552
Shi B, Zhou Z, Chen Y, Wang X, Xu B (2023) Preparation and properties of hydrophobic and highly transparent SiO2 aerogels. Ceram Int 49:27597. https://doi.org/10.1016/j.ceramint.2023.06.040
Rose A, Hofmann A, Voepel P, Milow B, Marschall R (2022) Photocatalytic activity and electron storage capability of TiO2 aerogels with an adjustable surface area. ACS Appl Energy Mater 5:14966. https://doi.org/10.1021/acsaem.2c02517
Yan W, Ai W, Liu W et al (2023) Ultra-sensitive SnO2 aerogel in nano-trace ethanol detection. J Alloys Compd 943:169042. https://doi.org/10.1016/j.jallcom.2023.169042
Zhu Z, Wang X, Zhang X et al (2024) High transmittance and ultra-low thermal conductivity ZrO2 aerogel via zirconium hydroxyacetate precursor. Ceram Int 50:4423. https://doi.org/10.1016/j.ceramint.2023.11.153
Wangoh LW, Huang Y, Jezorek RL et al (2016) Correlating lithium hydroxyl accumulation with capacity retention in V2O5 aerogel cathodes. ACS Appl Mater Interfaces 8:11532. https://doi.org/10.1021/acsami.6b02759
Cheng W, Rechberger F, Niederberger M (2016) Three-dimensional assembly of yttrium oxide nanosheets into luminescent aerogel monoliths with outstanding adsorption properties. ACS Nano 10:2467. https://doi.org/10.1021/acsnano.5b07301
Nguyen TD, Tang D, D’Acierno F, Michal CA, MacLachlan MJ (2018) Biotemplated lightweight γ-alumina aerogels. Chem Mater 30:1602. https://doi.org/10.1021/acs.chemmater.7b04800
Falk G, Borlaf M, Bendo T, de Oliveira APN, Neto JBR, Moreno R (2016) Colloidal sol–gel synthesis and photocatalytic activity of nanoparticulate Nb2O5 sols. J Am Ceram Soc 99:1968. https://doi.org/10.1111/jace.14217
Zhang R, Zhao Y (2020) Preparation and electrocatalysis application of pure metallic aerogel: a review. Catalysts 10:1376. https://doi.org/10.3390/catal10121376
Liao W, Xiao K, Tian T, Pan MP (2024) Carbon aerogel monoliths from polymers: a review. J Clean Prod 437:140736. https://doi.org/10.1016/j.jclepro.2024.140736
Kéri M, Nagy B, László K, Bányai I (2021) Structural changes in resorcinol formaldehyde aerogel seen by NMR. Microporous Mesoporous Mater 317:110988. https://doi.org/10.1016/j.micromeso.2021.110988
Wang D, Li ZY, Yang L et al (2023) Hydrogel electrolyte based on sodium polyacrylate/KOH hydrogel reinforced with bacterial cellulose aerogel for flexible supercapacitors. Chem Eng J 454:140090. https://doi.org/10.1016/j.cej.2022.140090
Kulkarni A, Jana SC (2021) Surfactant-free syndiotactic polystyrene aerogel foams via Pickering emulsion. Polymer 212:123125. https://doi.org/10.1016/j.polymer.2020.123125
Masika E, Mokaya R (2013) High surface area metal salt templated carbon aerogels a simple subcritical drying route: preparation and CO2 uptake properties. RSC Adv 3:17677. https://doi.org/10.1039/c3ra43420f
Xiao H, Lv J-B, Tan W et al (2022) Ultrasound-assisted freeze-drying process for polyimide aerogels. Chem Eng J 450:138344. https://doi.org/10.1016/j.cej.2022.138344
Li WC, Guo SC (2000) Preparation of low-density carbon aerogels from a cresol/formaldehyde mixture. Carbon 38:1520. https://doi.org/10.1016/S0008-6223(00)00114-7
Lachowicz D, Kmita A, Wirecka R et al (2023) Aerogels based on cationically modified chitosan and poly(vinyl alcohol) for efficient capturing of viruses. Carbohydr Polym 312:120756. https://doi.org/10.1016/j.carbpol.2023.120756
Meng GH, Peng HL, Wu JN et al (2017) Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation. Fibers Polym 18:706. https://doi.org/10.1007/s12221-017-1099-4
Zhang ML, Jiang S, Han FY, Li MM, Wang N, Liu LF (2021) Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydr Polym 264:118033. https://doi.org/10.1016/j.carbpol.2021.118033
Franco P, Cardea S, Tabernero A, De Marco I (2021) Porous aerogels and adsorption of pollutants from water and air: a review. Molecules 26:4440. https://doi.org/10.3390/molecules26154440
Takeshita S, Zhao SY, Malfait WJ (2021) Transparent, aldehyde-free chitosan aerogel. Carbohydr Polym 251:117089. https://doi.org/10.1016/j.carbpol.2020.117089
Pan JJ, Li Y, Chen KL, Zhang YP, Zhang H (2021) Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking. Carbohydr Polym 266:118102. https://doi.org/10.1016/j.carbpol.2021.118102
Maroulas KN, Trikkaliotis DG, Metaxa ZS et al (2023) Super-hydrophobic chitosan/graphene-based aerogels for oil absorption. J Mol Liq 390:123071. https://doi.org/10.1016/j.molliq.2023.123071
Wei DQ, Liu X, Lv SH et al (2022) Fabrication, structure, performance, and application of graphene-based composite aerogel. Materials 15:299. https://doi.org/10.3390/ma15010299
Barrios E, Fox D, Sip YYL et al (2019) Nanomaterials in advanced, high-performance aerogel composites: a review. Polymers 11:726. https://doi.org/10.3390/polym11040726
Esposito S (2019) “Traditional” sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 12:668. https://doi.org/10.3390/ma12040668
Maleki H, Duraes L, García-González CA, del Gaudio P, Portugal A, Mahmoudi M (2016) Synthesis and biomedical applications of aerogels: possibilities and challenges. Adv Coll Interface Sci 236:1. https://doi.org/10.1016/j.cis.2016.05.011
Ahmad S, Ahmad S, Sheikh JN (2023) Silica centered aerogels as advanced functional material and their applications: a review. J Non-Cryst Solids 611:122322. https://doi.org/10.1016/j.jnoncrysol.2023.122322
Chen Y, Zhang L, Yang Y et al (2021) Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication. Appl Adv Mater 33:e2005569. https://doi.org/10.1002/adma.202005569
Nascimento DM, Nunes YL, Figueirêdo MCB et al (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20:2428. https://doi.org/10.1039/c8gc00205c
Zhang XF, Elsayed I, Navarathna C, Schueneman GT, Hassan EIB (2019) Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification. ACS Appl Mater Interfaces 11:46714. https://doi.org/10.1021/acsami.9b15139
Wu XD, Kai Z, Jie D et al (2020) Facile synthesis of flexible and hydrophobic polymethylsilsesquioxane based silica aerogel via the co-precursor method and ambient pressure drying technique. J Non-Cryst Solids 530:119826. https://doi.org/10.1016/j.jnoncrysol.2019.119826
Ziegler C, Wolf A, Liu W, Herrmann AK, Gaponik N, Eychmüller A (2017) Modern inorganic aerogels. Angew Chem -Int Ed 56:13200. https://doi.org/10.1002/anie.201611552
Lermontov SA, Malkova AN, Sipyagina NA et al (2017) Facile synthesis of fluorinated resorcinol-formaldehyde aerogels. J Fluorine Chem 193:1. https://doi.org/10.1016/j.jfluchem.2016.11.001
Salimian S, Zadhoush A, Naeimirad M, Kotek R, Ramakrishna S (2018) A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites. Polym Compos 39:3383. https://doi.org/10.1002/pc.24412
Joseph AM, Nagendra B, Shaiju P, Surendran KP, Gowd EB (2018) Aerogels of hierarchically porous syndiotactic polystyrene with a dielectric constant near to air. J Mater Chem C 6:360. https://doi.org/10.1039/c7tc05102f
Wu LY, Gao L, Li JM et al (2023) Ultralight, super-compression, and hydrophobic nanofibrous aerogels from cellulose acetate/polyethylene oxide nanofibers for efficient and recyclable oil absorption. New J Chem 47:7930. https://doi.org/10.1039/d3nj00521f
Nakanishi Y, Hara Y, Sakuma W, Saito T, Nakanishi K, Kanamori K (2020) Colorless transparent melamine-formaldehyde aerogels for thermal insulation. ACS Appl Nano Mater 3:49. https://doi.org/10.1021/acsanm.9b02275
Sai HZ, Fu R, Xiang JH, Guan YL, Zhang FS (2018) Fabrication of elastic silica-bacterial cellulose composite aerogels with nanoscale interpenetrating network by ultrafast evaporative drying. Compos Sci Technol 155:72. https://doi.org/10.1016/j.compscitech.2017.11.004
Guerrero-Alburquerque N, Zhao SY, Adilien N, Koebel MM, Lattuada M, Malfait WJ (2020) Strong, machinable, and insulating chitosan-urea aerogels: toward ambient pressure drying of biopolymer aerogel monoliths. ACS Appl Mater Interfaces 12:22037. https://doi.org/10.1021/acsami.0c03047
Chaudary A, Patoary MK, Zhang ML, Chudhary T, Farooq A, Liu LF (2022) Structurally integrated thermal management of isotropic and directionally ice-templated nanocellulose/chitosan aerogels. Cellulose 29:8265. https://doi.org/10.1007/s10570-022-04781-6
Wang ZJ, Liu FX, Wei W, Dong C, Li ZY, Liu ZJ (2023) Influence of supercritical fluid parameters on the polyimide aerogels in a high-efficiency supercritical drying process. Polymer 268:125713. https://doi.org/10.1016/j.polymer.2023.125713
Brinker CJ (1999) New directions in sol-gel processing: evaporation-induced self-assembly of porous and composite media. Abstr Pap Am Chem Soc 218:U734
Brinker CJ (1994) Sol–gel processing of silica. Colloid Chem Silica 234:361
Mazrouei-Sebdani Z, Khoddami A, Hadadzadeh H, Zarrebini M, Karimi A, Shams-Ghahfarokhi F (2016) The effect of the nano-structured aerogel powder on the structural parameters, water repellency, and water vapor/air permeability of a fibrous polyester material. Mater Chem Phys 177:99. https://doi.org/10.1016/j.matchemphys.2016.04.002
Zhang ZD, Scherer GW (2017) Supercritical drying of cementitious materials. Cem Concr Res 99:137. https://doi.org/10.1016/j.cemconres.2017.05.005
Yuan CF, Wang DG, Zhang YJ, Li K, Ding J (2023) Research progress on preparation, modification, and application of phenolic aerogel. Nanotechnol Rev 12(20230):109. https://doi.org/10.1515/ntrev-2023-0109
Pajonk GM, Repellinlacroix M, Abouarnadasse S, Chaouki J, Klvana D (1990) From sol–gel to aerogels and cryogels. J Non-Cryst Solids 121:66. https://doi.org/10.1016/0022-3093(90)90106-V
Simón-Herrero C, Caminero-Huertas S, Romero, A et al (2016) Effects of freeze-drying conditions on aerogel properties. J Mater Sci 51:8977. https://doi.org/10.1007/s10853-016-0148-5
Tang X, Yan X (2017) Acoustic energy absorption properties of fibrous materials: a review. Compos A Appl Sci Manuf 101:360. https://doi.org/10.1016/j.compositesa.2017.07.002
Kim BS, Choi J, Park YS, Qian YJ, Shim SE (2022) Semi-rigid polyurethane foam and polymethylsilsesquioxane aerogel composite for thermal insulation and sound absorption. Macromol Res 30:245. https://doi.org/10.1007/s13233-022-0026-8
Ma WJ, Jiang ZC, Lu T, Xiong RH, Huang CB (2022) Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing. Chem Eng J 430:132989. https://doi.org/10.1016/j.cej.2021.132989
Gu HB, Gao C, Zhou XM, Du A, Naik N, Guo ZH (2021) Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv Compos Hybrid Mater 4:459. https://doi.org/10.1007/s42114-021-00289-y
Shao H, Zhao S, Fei Z et al (2023) Unidirectional infiltrated PI/SiO2 composite aerogels with a confined reinforcing strategy for integrated thermal and acoustic insulation. Compos Part B Eng 266:111002. https://doi.org/10.1016/j.compositesb.2023.111002
Zhu G, Xu H, Dufresne A, Lin N (2018) High-adsorption, self-extinguishing, thermal, and acoustic-resistance aerogels based on organic and inorganic waste valorization from cellulose nanocrystals and red mud. ACS Sustain Chem Eng 6:7168. https://doi.org/10.1021/acssuschemeng.8b01244
Fan S-T, Zhang Y, Tan M et al (2023) Multifunctional elastic aerogels of nanofibrous metal−organic framework for thermal insulation and broadband low-frequency sound absorption. Compos Sci Technol 242:110183. https://doi.org/10.1016/j.compscitech.2023.110183
Lou CW, Zhou XY, Liao XL et al (2021) Sustainable cellulose-based aerogels fabricated by directional freeze-drying as excellent sound-absorption materials. J Mater Sci 56:18762. https://doi.org/10.1007/s10853-021-06498-6
Zou FX, Cucharero J, Dong YJ et al (2023) Maximizing sound absorption, thermal insulation, and mechanical strength of anisotropic pectin cryogels. Chem Eng J 462:142236. https://doi.org/10.1016/j.cej.2023.142236
Zong D, Bai W, Geng M et al (2022) Bubble templated flexible ceramic nanofiber aerogels with cascaded resonant cavities for high-temperature noise absorption. ACS Nano 16:13740. https://doi.org/10.1021/acsnano.2c06011
Gui Y, Fei Z, Zhao S et al (2023) High-strength and multifunctional honeycomb polyimide aerogel fabricated by a freeze casting-assisted extrusion printing and building block-assembly strategy for sound absorbing metamaterials. Addit Manuf 77:103799. https://doi.org/10.1016/j.addma.2023.103799
Wang WQ, Zhou YK, Li Y, Hao T (2019) Aerogels-filled Helmholtz resonators for enhanced low-frequency sound absorption. J Supercrit Fluids 150:103. https://doi.org/10.1016/j.supflu.2019.04.011
Palacio O, Malfait WJ, Michel S, Barbezat M, Mazrouei-Sebdani Z (2023) Vibration and structure-borne sound isolation properties of silica aerogels. Constr Build Mater 399:132568. https://doi.org/10.1016/j.conbuildmat.2023.132568
Krishnan VG, Joseph AM, Kuzhichalil Peethambharan S, Gowd EB (2021) Nanoporous crystalline aerogels of syndiotactic polystyrene: polymorphism, dielectric, thermal, and acoustic properties. Macromolecules 54:10605. https://doi.org/10.1021/acs.macromol.1c01555
Jiang X, Zhang J, You F et al (2022) Chitosan/clay aerogel: microstructural evolution, flame resistance and sound absorption. Appl Clay Sci 228:106624. https://doi.org/10.1016/j.clay.2022.106624
Long LY, Weng YX, Wang YZ (2018) Cellulose aerogels: synthesis, applications, and prospects. Polymers (Basel) 10:623. https://doi.org/10.3390/polym10060623
Shahid AM, Sangeetha UK, Sahoo SK (2023) Facile fabrication of green and sustainable functionalized Bombax ceiba L. wood based aerogel for multifunctional applications. Ind Crop Prod 202:117076. https://doi.org/10.1016/j.indcrop.2023.117076
Wang C, Xiong Y, Fan B et al (2016) Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal insulation. Sci Rep 6:32383. https://doi.org/10.1038/srep32383
Yan P, Zhou B, Du A (2014) Synthesis of polyimide cross-linked silica aerogels with good acoustic performance. RSC Adv 4:58252. https://doi.org/10.1039/c4ra08846h
Yang MM, Chen ZF, Yang LX et al (2023) Hierarchically porous networks structure based on flexible SiO2 nanofibrous aerogel with excellent low frequency noise absorption. Ceram Int 49:301. https://doi.org/10.1016/j.ceramint.2022.08.344
Si Y, Yu JY, Tang XM, Ge JL, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802. https://doi.org/10.1038/ncomms6802
Cao LT, Shan HR, Zong DD et al (2022) Fire-resistant and hierarchically structured elastic ceramic nanofibrous aerogels for efficient low-frequency noise reduction. Nano Lett 22:1609. https://doi.org/10.1021/acs.nanolett.1c04532
Cao LT, Si Y, Wu YY, Wang XQ, Yu JY, Ding B (2019) Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale 11:2289. https://doi.org/10.1039/c8nr09288e
Chen Z, Guan MD, Cheng YW et al (2023) Boehmite-enhanced poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile (PVDF-HFP/PAN) coaxial electrospun nanofiber hybrid membrane: a superior separator for lithium-ion batteries. Adv Compos Hybrid Mater 6:219. https://doi.org/10.1007/s42114-023-00794-2
Shen SY, Zhang Y, Guo W et al (2024) Hierarchically piezoelectric aerogels for efficient sound absorption and machine-learning-assisted sensing. Adv Func Mater 34:2406773. https://doi.org/10.1002/adfm.202406773
Wang G, Yuan P, Ma B, Yuan W, Luo J (2020) Hierarchically structured M13 phage aerogel for enhanced sound-absorption. Macromol Mater Eng 305:2000452. https://doi.org/10.1002/mame.202000452
Wang G, Ma BH, Yuan WZ, Luo J (2023) Acoustic and mechanical characterization of a novel polypropylene fibers based composite aerogel. Mater Lett 334:133696. https://doi.org/10.1016/j.matlet.2022.133696
Koh HW, Le DK, Ng GN et al (2018) Advanced recycled polyethylene terephthalate aerogels from plastic waste for acoustic and thermal insulation applications. Gels 4:43. https://doi.org/10.3390/gels4020043
Sun F, Bankslee P, Peng H (1993) Sound-absorption in an anisotropic periodically layered fluid-saturated porous-medium. Appl Acoust 39:65. https://doi.org/10.1016/0003-682x(93)90030-A
Amares ESS, Hong TW, Durairaj R, Hamid HSHB (2017) A review: characteristics of noise absorption material. J Phys Conf Ser 908:012005. https://doi.org/10.1088/1742-6596/908/1/012005
Tong ZW, Yan BX, Zhang BJ, Xu H, Li XL, Ji HM (2022) Preparation and textural evolution: From organosilane aerogel to SiOC aerogels. Ceram Int 48:5468. https://doi.org/10.1016/j.ceramint.2021.11.091
Groult S, Budtova T (2018) Tuning structure and properties of pectin aerogels. Eur Polymer J 108:250. https://doi.org/10.1016/j.eurpolymj.2018.08.048
Groult S, Buwalda S, Budtova T (2021) Pectin hydrogels, aerogels, cryogels and xerogels: influence of drying on structural and release properties. Eur Polymer J 149:110386. https://doi.org/10.1016/j.eurpolymj.2021.110386
Liao W, Zhao HB, Liu ZG, Xu SM, Wang YZ (2019) On controlling aerogel microstructure by freeze casting. Compos Part B Eng 173:107036. https://doi.org/10.1016/j.compositesb.2019.107036
Yu ZL, Qin B, Ma ZY et al (2019) Superelastic hard carbon nanofiber aerogels. Adv Mater 31:1900651. https://doi.org/10.1002/adma.201900651
Pirzada T, Ashrafi Z, Xie WY, Khan SA (2020) Cellulose silica hybrid nanofiber aerogels: from sol–gel electrospun nanofibers to multifunctional aerogels. Adv Funct Mater 30:1907359. https://doi.org/10.1002/adfm.201907359
Shao HL, Fei ZF, Li XH et al (2024) Enhanced sound absorption property of polyimide aerogels by the incorporation of macropores. Mater Lett 366:136497. https://doi.org/10.1016/j.matlet.2024.136497
Zhang XX, Zheng QT, Chen YJ et al (2024) A controllable foaming approach for the fabrication of “rattan-like” graphene-based composite aerogel with desirable microwave absorption capacity. Compos Sci Technol 250:110532. https://doi.org/10.1016/j.compscitech.2024.110532
Dong S, Duan YY, Chen XY et al (2024) Recent advances in preparation and structure of polyurethane porous materials for sound absorbing application. Macromol Rapid Commun 45:2400108. https://doi.org/10.1002/marc.202400108
Hamamizadeh E, Mahabadi HA, Khavanin A (2022) Investigating the mechanical, morphological, and acoustic properties of the phenolic aerogel/flexible polyurethane foam composite. J Polym Environ 30:2483. https://doi.org/10.1007/s10924-021-02302-3
Chen YM, Zhou LJ, Chen L et al (2019) Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26:6653. https://doi.org/10.1007/s10570-019-02557-z
Ruan J-Q, Xie K-Y, Li Z et al (2023) Multifunctional ultralight nanocellulose aerogels as excellent broadband acoustic absorption materials. J Mater Sci 58:971. https://doi.org/10.1007/s10853-022-08118-3
Tang XN, Yan X (2017) Multi-layer fibrous structures for noise reduction. J Text Inst 108:2096. https://doi.org/10.1080/00405000.2017.1315793
Forest L, Gibiat V, Hooley A (2001) Impedance matching and acoustic absorption in granular layers of silica aerogels. J Non-Cryst Solids 285:230. https://doi.org/10.1016/S0022-3093(01)00458-6
Dasyam A, Xue YT, Bolton JS, Sharma B (2022) Effect of particle size on sound absorption behavior of granular aerogel agglomerates. J Non-Cryst Solids 598:121942. https://doi.org/10.1016/j.jnoncrysol.2022.121942
Sachithanadam M, Joshi SC (2016) Effect of granule sizes on acoustic properties of protein-based silica aerogel composites via novel inferential transmission loss method. Gels 2:11. https://doi.org/10.3390/gels2010011
Buratti C, Merli F, Moretti E (2017) Aerogel-based materials for building applications: influence of granule size on thermal and acoustic performance. Energy Build 152:472. https://doi.org/10.1016/j.enbuild.2017.07.071
Zong D, Bai W, Yin X, Yu J, Zhang S, Ding B (2023) Gradient pore structured elastic ceramic nanofiber aerogels with cellulose nanonets for noise absorption. Adv Func Mater 33:2301870. https://doi.org/10.1002/adfm.202301870
Zhou Y, Li L, Yang C et al (2023) Highly efficient thermo-acoustic insulating aerogels enabled by resonant cavity engineering. ACS Nano 17:14883. https://doi.org/10.1021/acsnano.3c03347
Yang LK, Chua JW, Li XW et al (2023) Superior broadband sound absorption in hierarchical ultralight graphene oxide aerogels achieved through emulsion freeze-casting. Chem Eng J 469:143896. https://doi.org/10.1016/j.cej.2023.143896
Cao LT, Yu X, Yin X, Si Y, Yu JY, Ding B (2021) Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption. J Colloid Interface Sci 597:21. https://doi.org/10.1016/j.jcis.2021.03.172
Eskandari N, Motahari S, Atoufi Z, Hashemi Motlagh G, Najafi M (2017) Thermal, mechanical, and acoustic properties of silica-aerogel/UPVC composites. J Appl Polym Sci 134:44685. https://doi.org/10.1002/app.44685
Yang T, Xiong X, Venkataraman M et al (2023) Investigation on sound absorption properties of aerogel/polymer nonwovens. J Text Inst 110:196. https://doi.org/10.1080/00405000.2018.1472540
Mazrouei-Sebdani Z, Khoddami A, Hadadzadeh H, Zarrebini M (2015) Synthesis and performance evaluation of the aerogel-filled PET nanofiber assemblies prepared by electro-spinning. RSC Adv 5:12830. https://doi.org/10.1039/c4ra15297b
Talebi Z, Soltani P, Habibi N, Latifi F (2019) Silica aerogel/polyester blankets for efficient sound absorption in buildings. Constr Build Mater 220:76. https://doi.org/10.1016/j.conbuildmat.2019.06.031
Motahari S, Javadi H, Motahari A (2015) Silica-aerogel cotton composites as sound absorber. J Mater Civ Eng 27:04014237. https://doi.org/10.1061/(Asce)Mt.1943-5533.0001208
Seraji AA, Aghvami-Panah M, Shams-Ghahfarokhi F (2022) Evaluation of ultimate engineering properties of polytetrafluoroethylene/carbon-aerogel/glass fiber porous composite. Colloids Surfaces A-Physicochem Eng Asp 647:128975. https://doi.org/10.1016/j.colsurfa.2022.128975
Dourbash A, Buratti C, Belloni E, Motahari S (2017) Preparation and characterization of polyurethane/silica aerogel nanocomposite materials. J Appl Polym Sci 134:44521. https://doi.org/10.1002/app.44521
Malakooti S, Churu HG, Lee A et al (2018) Sound transmission loss enhancement in an inorganic-organic laminated wall panel using multifunctional low-density nanoporous polyurea aerogels: experiment and modeling. Adv Eng Mater 20:1700937. https://doi.org/10.1002/adem.201700937
Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustainability 6:5839. https://doi.org/10.3390/su6095839
Bergmann Becker PF, Effting C, Schackow A (2022) Lightweight thermal insulating coating mortars with aerogel, EPS, and vermiculite for energy conservation in buildings. Cem Concr Compos 125:104283. https://doi.org/10.1016/j.cemconcomp.2021.104283
Cotana F, Pisello AL, Moretti E, Buratti C (2014) Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance. Build Environ 81:92. https://doi.org/10.1016/j.buildenv.2014.06.014
Buratti C, Moretti E (2012) Experimental performance evaluation of aerogel glazing systems. Appl Energy 97:430. https://doi.org/10.1016/j.apenergy.2011.12.055
Satterwhite J (2009) Case studies and installation data on the acoustical properties of a new class of translucent, lightweight insulation material from NASA called aerogel. J Acoust Soc Am 125:2503. https://doi.org/10.1121/1.4783390
Xiang N, Whitney MA, Malakooti S, Churu HG, Leventis N, Lu H (2018) Correlating dynamical properties of organic aerogel with increased sound insulation of sandwich wallboard systems. J Acoust Soc Am 144:1754. https://doi.org/10.1121/1.5067770
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 51705113), the Natural Science Foundation of Jiangsu Province (Grant No. BK20191192), Guiding Program of China Textile Industry Federation (Grant No. 2022035), Core technology research projects of Wuhu (2022hg16).
Author information
Authors and Affiliations
Contributions
Yuanlong Meng: Writing-original draft preparation. Jieyu Xue: Picture curation. Ruonan Han: Picture curation. Tengzhou Xu: Picture curation. Yuanrong Ding: Picture curation and edit. Yong Yang: Article review and edit.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Handling Editor: Stephen Eichhorn.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Meng, Y., Xue, J., Han, R. et al. Preparation, design, structure and application of aerogel-based materials for noise control. J Mater Sci 60, 383–413 (2025). https://doi.org/10.1007/s10853-024-10533-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-024-10533-7