Abstract
Directional freeze-drying is considered to regulate the structure of nanocellulose aerogels with special performances. In this work, TEMPO-oxidized cellulose nanofiber aerogels with high porosity (> 99.5%) and low density (~ 7 mg/cm3) were produced by different freeze-drying methods. The effects of temperature, freezing reagents and freezing methods on the structure and properties of aerogels were investigated. Among them, an anisotropic cellulose aerogel was obtained using a simple and flexible directional freezing in ethanol of − 30 °C by a self-made directional freezer. Our results demonstrated that it could present honeycomb-like pores in the transverse direction and regular directional tunnels in the longitudinal direction, and some attractive features, such as high water adsorption (120 g/g) and stability in water. Compared with other aerogels, this anisotropic structure also provided the aerogel with excellent compressive property (15.2 kPa) and faster liquid transport (4.95 mm/s) in the longitudinal direction than in other directions. The distinctive aerogels based on nanocellulose by directional freeze-drying are also expected to be combined with multifunctional materials to achieve directional applications to meet the requirements of different fields.
Graphic abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bai H, Walsh F, Gludovatz B, Delattre B, Huang C, Chen Y, Tomsia AP, Ritchie RO (2015) Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with nacre-mimetic architecture by a bidirectional freezing method. Adv Mater 28:50–56. https://doi.org/10.1002/adma.201504313
Benavente D, Lock P, del-Cura MÁ, Salvador O (2002) Predicting the capillary imbibition of porous rocks from microstructure. Transp Porous Media 49:59–76. https://doi.org/10.1023/a:1016047122877
Chen W, Yu H, Li Q, Liu Y, Li J (2011) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7:10360–10368. https://doi.org/10.1039/C1SM06179H
Dang LN, Seppälä J (2015) Electrically conductive nanocellulose/graphene composites exhibiting improved mechanical properties in high-moisture condition. Cellulose 22:1799–1812. https://doi.org/10.1007/s10570-015-0622-2
De Oliveira PB, Godinho M, Zattera AJ (2018) Oils sorption on hydrophobic nanocellulose aerogel obtained from the wood furniture industry waste. Cellulose 25:3105–3119. https://doi.org/10.1007/s10570-018-1781-8
Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518. https://doi.org/10.1126/science.1120937
Deville S, Viazzi C, Guizard C (2012) Ice-structuring mechanism for zirconium acetate. Langmuir 28:14892–14898. https://doi.org/10.1021/la302275d
Ding Q, Xu X, Yue Y, Mei C, Huang C, Jiang S, Wu Q, Han J (2018) Nanocellulose-mediated electroconductive self-Healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl Mater Interfaces 10:27987–28002. https://doi.org/10.1021/acsami.8b09656
Fatemeh R, Maleksadat H, Mehdi J, Liang Y (2018) Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 25:4695–4710. https://doi.org/10.1007/s10570-018-1867-3
Guo L, Chen Z, Lyu S, Fu F, Wang S (2017a) Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy. Carbohydr Polym 179:333–340. https://doi.org/10.1016/j.carbpol.2017.09.084
Guo Z, Tang G, Zhou Y, Liu S, Hou H, Chen Z, Chen J, Hu C, Wang F, De Smedt SC, Xiong R, Huang C (2017b) Fabrication of sustained-release CA-PU coaxial electrospun fiber membranes for plant grafting application. Carbohydr Polym 169:198–205. https://doi.org/10.1016/j.carbpol.2017.04.020
Hajian A, Fu Q, Berglund LA (2018) Recyclable and superelastic aerogels based on carbon nanotubes and carboxymethyl cellulose. Compos Sci Technol 159:1–10. https://doi.org/10.1016/j.compscitech.2018.01.002
Han J, Lu K, Yue Y, Mei C, Huang C, Wu Q, Xu X (2019) Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors. Ind Crop Prod 128:94–107. https://doi.org/10.1016/j.indcrop.2018.11.004
Huang S, Zhao Z, Feng C, Mayes E, Yang J (2018) Nanocellulose reinforced p(AAm-co-AAc) hydrogels with improved mechanical properties and biocompatibility. Compos Part A Appl Sci Manuf 112:395–404. https://doi.org/10.1016/j.compositesa.2018.06.028
Innerlohinger J, Weber H, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135. https://doi.org/10.1002/masy.200651212
Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stabil 95:1394–1398. https://doi.org/10.1016/j.polymdegradstab.2010.01.017
Jia G, Li Z, Liu P, Jing Q (2017) Preparation and characterization of aerogel/expanded perlite composite as building thermal insulation material. J Non-Cryst Solids 482:192–202. https://doi.org/10.1016/j.jnoncrysol.2017.12.047
Jiang F, Hsieh YL (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2:6337–6342. https://doi.org/10.1039/c4ta00743c
Jiang S, Agarwal S, Greiner A (2017) Low-density open cellular sponges as functional materials. Angew Chem Int Ed 56:15520–15538. https://doi.org/10.1002/anie.201700684
Jin Y, Wang P, Hou K, Lin Y, Li L, Xu S, Cheng J, Wen X, Pi P (2018) Superhydrophobic porous surface fabricated via phase separation between polyhedral oligomeric silsesquioxane-based block copolymer and polyethylene glycol. Thin Solid Films 649:210–218. https://doi.org/10.1016/j.tsf.2018.01.030
Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741. https://doi.org/10.1038/127741a0
Köhnke T, Elder T, Theliander H, Ragauskas AJ (2014) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydr Polym 4:4317–4323. https://doi.org/10.1016/j.carbpol.2013.03.060
Kolla P, Lai C, Mishra S, Fong H, Rhine W, Smirnova A (2014) CVD grown CNTs within iron modified and graphitized carbon aerogel as durable oxygen reduction catalysts in acidic medium. Carbon 79:518–528. https://doi.org/10.1016/j.carbon.2014.08.010
Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RHA (2011) Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano 5:1967–1974. https://doi.org/10.1021/nn200108s
Laitinen O, Suopajärvi T, Österberg M, Liimatainen H (2017) Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Interfaces 9:25029–25037. https://doi.org/10.1021/acsami.7b06304
Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117. https://doi.org/10.1039/C7TA02807E
Lee J, Deng Y (2011) The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7:6034–6040. https://doi.org/10.1039/C1SM05388D
Li X, Liu L, Zhang Y, Shen S, Ge S, Ling L (2001) Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels. Carbon 39:159–165. https://doi.org/10.1016/s0008-6223(00)00020-8
Liu D, Ma Z, Wang Z, Tian H, Mingyue G (2014) Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir 30:9544–9550. https://doi.org/10.1021/la502723d
Liu T, Huang M, Li X, Wang C, Gui C, Yu Z (2016) Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 100:456–464. https://doi.org/10.1016/j.carbon.2016.01.038
Liu B, Pan Y, Sun G, Huang J (2018a) The preparation and characterization of the Ni-NiO/TiO2 hollow composite materials on micro-nano cellulose fibers. Vacuum 155:553–558. https://doi.org/10.1016/j.vacuum.2018.06.044
Liu L, Yan Y, Cai Z, Lin S, Hu X (2018b) Growth-oriented Fe-based MOFs synergized with graphene aerogels for high-performance supercapacitors. Adv Mater Interfaces 5:1701548–1701555. https://doi.org/10.1002/admi.201701548
Lu L, Wei Y, Qian L (2017) A facile method to prepare aligned porous magnetic silica monoliths from directional freeze-drying. Sci Adv Mater 9:507–513. https://doi.org/10.1166/sam.2017.2331
Lundahl MJ, Klar V, Ajdary R, Norberg N, Ago M, Cunha AG, Rojas OJ (2018) Absorbent filaments from cellulose nanofibril hydrogels through continuous coaxial wet spinning. ACS Appl Mater Interfaces 10:27287–27296. https://doi.org/10.1021/acsami.8b08153
Mallepally RR, Bernard I, Marin MA, Ward KR, McHugh MA (2013) Superabsorbent alginate aerogels. J Supercrit Fluids 79:202–208. https://doi.org/10.1016/j.supflu.2012.11.024
Martoia F, Cochereau T, Dumont PJJ, Orgéas L, Terrien M, Belgacem MN (2016) Cellulose nanoFibrils foams: links between ice-templating conditions, microstructures and mechanical properties. Mater Des 104:376–391. https://doi.org/10.1016/j.matdes.2016.04.088
Martys NS, Ferraris CF (1997) Capillary transport in mortars and concrete. Cem Concr Res 27:747–760. https://doi.org/10.1016/S0008-8846(97)00052-5
Osorio DA, Seifried B, Moquin P, Grandfield K, Cranston E (2018) Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing. J Mater Sci 53:9842–9860. https://doi.org/10.1007/s10853-018-2235-2
Pan Z, Nishihara H, Iwamura S, Sekiguchi T, Sato A, Isogai A, Kang F, Kyotani T, Yang Q (2016) Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying. ACS Nano 10:10689–10697. https://doi.org/10.1021/acsnano.6b05808
Qiu L, Shao Z, Wang J, Zhang D, Cao J (2013a) Study on synthesis, rheological and electrospinning functional materials of carboxymethyl cellulose lithium (CMC-Li). Acta Chim Sin 71:1521–1526. https://doi.org/10.6023/A13060680
Qiu L, Shao Z, Yang M, Wang W, Wang F, Xie L, Lv S, Zhang Y (2013b) Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery. Carbohydr Polym 96:240–245. https://doi.org/10.1016/j.carbpol.2013.03.062
Ren X, Guo H, Feng J, Si P, Zhang L, Ci L (2017) Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel. Chemosphere 191:389–399. https://doi.org/10.1016/j.chemosphere.2017.10.076
Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691. https://doi.org/10.1021/bm060154s
Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. https://doi.org/10.1021/bm0703970
Shi J, Hara Y, Sun C, Anderson MA, Wang X (2011) Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. Nano Lett 11:3413–3419. https://doi.org/10.1021/nl201823u
Si Y, Yu J, Tang X, Ge J, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5:5802–5810. https://doi.org/10.1038/ncomms6802
Si J, Cui Z, Xie P, Song L, Wang Q, Liu Q, Liu C (2016) Characterization of 3D elastic porous polydimethylsiloxane (PDMS) cell scaffolds fabricated by VARTM and particle leaching. J Appl Polym Sci 133:42909. https://doi.org/10.1002/app.42909
Si Y, Wang X, Dou L, Yu J, Ding B (2018) Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv 4:eaas8925. https://doi.org/10.1126/sciadv.aas8925
Song J, Chen C, Yang Z, Kuang Y, Li T, Li Y, Huang H, Kierzewski I, Liu B, He S, Gao T, Yuruker SU, Gong A, Yang B, Hu L (2017) Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12:140–147. https://doi.org/10.1021/acsnano.7b04246
Tao Y, Endo M, Kaneko K (2008) A review of synthesis and nanopore structures of organic polymer aerogels and carbon aerogels. Recent Pat Chem Eng 1:192–200. https://doi.org/10.2174/1874478810801030192
Wang X, Zhang Y, Jiang H, Song Y, Zhou Z, Zhao H (2016) Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology. Mater Lett 183:179–182. https://doi.org/10.1016/j.matlet.2016.07.081
Wang M, Shao C, Zhou S, Yang J, Xu F (2017) Preparation of carbon aerogels from TEMPO-oxidized cellulose nanofibers for organic solvents absorption. RSC Adv 7:38220–38230. https://doi.org/10.1039/C7RA05506D
Wang D, Yu H, Fan X, Gu J, Ye S, Yao J, Ni Q (2018a) High aspect ratio carboxylated cellulose nanofibers cross-linked to robust aerogels for superabsorption–flocculants: paving way from nanoscale to macroscale. ACS Appl Mater Interfaces 10:20755–20766. https://doi.org/10.1021/acsami.8b04211
Wang X, Zhang Y, Wang S, Jiang H, Liu S, Yao Y, Zhang T, Li Q (2018b) Synthesis and characterization of amine-modified spherical nanocellulose aerogels. J Mater Sci 53:13304–13315. https://doi.org/10.1007/s10853-018-2595-7
Wei TY, Kuo CY, Hsu YJ, Lu SY, Chang YC (2008) Tin oxide nanocrystals embedded in silica aerogel: photoluminescence and photocatalysis. Microporous Mesoporous Mater 112:580–588. https://doi.org/10.1016/j.micromeso.2007.10.040
Wicklein B, Kocjan A, Salazar AG, Carosio F, Camino G, Antonietti M, Bergström L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277–283. https://doi.org/10.1038/nnano.2014.248
Xu Z, Zhou H, Jiang X, Li J, Huang F (2017) Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnol 11:929–934. https://doi.org/10.1049/iet-nbt.2017.0063
Xu Z, Jiang X, Zhou H, Li J (2018) Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)–cellulose nanofiber (CNF) aerogels as effective oil absorbents. Cellulose 25:1217–1227. https://doi.org/10.1007/s10570-017-1619-9
Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025. https://doi.org/10.1021/cm502873c
Zhang W, Zhang Y, Lu C, Deng Y (2012) Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J Mater Chem 22:11642–11650. https://doi.org/10.1039/C2JM30688C
Zhou Y, Fu S, Pu Y, Pan S, Ragauskas AJ (2014) Preparation of aligned porous chitin nanowhisker foams by directional freeze–casting technique. Carbohydr Polym 112:277–283. https://doi.org/10.1016/j.carbpol.2014.05.062
Zhou S, Wang M, Chen X, Xu F (2015) Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties. ACS Sustain Chem Eng 3:3346–3354. https://doi.org/10.1021/acssuschemeng.5b01020
Acknowledgments
This study was funded by the National Natural Science Foundation of China (Grant Nos. 51803093, 31670556 and 31770609), Natural Science Foundation of Jiangsu Province (BK20180770), Natural Science Foundation of Jiangsu Province for Outstanding Young Scholars (BK20180090), and 333 Project Foundation of Jiangsu Province (BRA2018337).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Chen, Y., Zhou, L., Chen, L. et al. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26, 6653–6667 (2019). https://doi.org/10.1007/s10570-019-02557-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-019-02557-z