Abstract
Grassmannian \({{{\mathcal {G}}}}_q(n,k)\) is the set of all k-dimensional subspaces of the vector space \({\mathbb {F}}_q^n\). Kötter and Kschischang showed that codes in Grassmannian space can be used for error-correction in random network coding. On the other hand, these codes are q-analogs of codes in the Johnson scheme, i.e. constant dimension codes. These codes of the Grassmannian \({{{\mathcal {G}}}}_q(n,k)\) also form a family of q-analogs of block designs and they are called subspace designs. In this paper, we examine one of the last families of q-analogs of block designs which was not considered before. This family called subspace packings is the q-analog of packings, and was considered recently for network coding solution for a family of multicast networks called the generalized combination networks. A subspace packing t-\((n,k,\lambda )_q\) is a set \({\mathbb {S}}\) of k-subspaces from \({{{\mathcal {G}}}}_q(n,k)\) such that each t-subspace of \({{{\mathcal {G}}}}_q(n,t)\) is contained in at most \(\lambda \) elements of \({\mathbb {S}}\). The goal of this work is to consider the largest size of such subspace packings. We derive a sequence of lower and upper bounds on the maximum size of such packings, analyse these bounds, and identify the important problems for further research in this area.
Similar content being viewed by others
Notes
Using the methods of Sect. 3.2, we can consider the corresponding multiset \({{{\mathcal {P}}}}\) of points, which has cardinality 181 and is \(2^3\)-divisible. Its 3-complement \({\overline{{{{\mathcal {P}}}}}}\) is also 8-divisible and has cardinality 8, which leaves an 8-fold point as the unique possibility for \({\overline{{{{\mathcal {P}}}}}}\). Due to \(\lambda =3<8\), this is impossible in our situation. We remark that the Johnson bound for points, see Proposition 2, gives \({{{\mathcal {A}}}}^r_2(7,5,1;3)\le 12\), while its improvement based on the methods of Sect. 3.2, see Proposition 5, gives \({{{\mathcal {A}}}}^r_2(7,5,1;3)\le 11\).
References
Ahlswede R., Cai N., Li S.-Y.R., Yeung R.W.: Network information flow. IEEE Trans. Inf. Theory 46, 1204–1216 (2000).
Baker R.D.: Partitioning the planes \({\rm AG}_{{2m}}\)(2) into 2-designs. Discret. Math. 15, 205–211 (1976).
Ball S., Hirschfeld J.: Bounds on \((n, r)\)-arcs and their application to linear codes. Finite Fields Appl. 11, 326–336 (2005).
Beutelspacher A.: Partial parallelisms in finite projective spaces. Geom. Dedicata 36, 273–278 (1990).
Blackburn S.R., Etzion T.: The asymptotic behavior of Grassmannian codes. IEEE Trans. Inf. Theory 58, 6605–6609 (2012).
Braun M., Etzion T., Östergård P.R.J., Vardy A., Wassermann A.: Existence of \(q\)-analogs of steiner systems. Forum Math. Pi 4, 1–14 (2016).
Braun M., Kerber A., Laue R.: Systematic construction of \(q\)-analogs of \(t\)-\((v, k,\lambda )\)-designs. Des. Codes Cryptogr. 34, 55–70 (2005).
Braun M., Kiermaier M., Wassermann A.: \(q\)-Analogs of Designs: Subspace Designs, Network Coding and Subspace Designs, pp. 171–211. Springer, New York (2018).
Braun M., Kiermaier M., Kohnert A., Laue R.: Large Sets of subspace designs. J. Comb. Theory Ser. A 147, 155–185 (2017).
Braun M., Kohnert A., Östergård P.R.J., Wassermann A.: Large sets of \(t\)-designs over finite fields. J. Comb. Theory Ser. A 124, 195–202 (2014).
Buratti M., Kiermaier M., Kurz S., Nakić A., Wassermann A.: \(q\)-analogs of group divisible designs. In: Schmidt K.U., Winterhof A. (eds.) Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications (2019).
Cameron P.: Generalisation of Fisher’s inequality to fields with more than one element. In: McDonough T.P., textscMavron V.C. (eds.) Combinatorics, London Math. Soc. Lecture Note Ser. 13 pp. 9–13. Cambridge Univ. Press, Cambridge (1974).
Cameron P.: Locally symmetric designs. Geom. Dedicata 3, 65–76 (1974).
Cohn H.: Projective geometry over \({\mathbb{F}}_1\) and the Gaussian binomial coefficients. Am. Math. Monthly 111, 487–495 (2004).
Delsarte P.: Association schemes and \(t\)-designs in regular semilattices. J. Comb. Theory Ser. A 20, 230–243 (1976).
Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25, 226–241 (1978).
Denniston R.: Some packings of projective spaces. Atti della Accademia nazionale dei Lincei 52, 36–40 (1972).
Drake D., Freeman J.: Partial \(t\)-spreads and group constructible \((s, r,\mu )\)-nets. J. Geom. 13, 210–216 (1979).
Etzion T.: Partial \(k\)-parallelisms in finite projective spaces. J. Comb. Des. 23, 101–114 (2015).
Etzion T.: A new approach for examining \(q\)-Steiner systems. Electron. J. Comb. 25, 2.8 (2018).
Etzion T., Hooker N.: Residual \(q\)-Fano plane and related structures. Electron. J. Comb. 25, 2.3 (2018).
Etzion T., Kurz S., Otal K., Özbudak F.: Subspace packings. In: The Eleventh International Workshop on Coding and Cryptography 2019: WCC Proceedings, p. 10 (2019).
Etzion T., Silberstein N.: Error-correcting codes in projective space via rank-metric codes and Ferrers diagrams. IEEE Trans. Inf. Theory 55, 2909–2919 (2009).
Etzion T., Silberstein N.: Codes and designs related to lifted MRD codes. IEEE Trans. Inf. Theory 59, 1004–1017 (2013).
Etzion T., Storme L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78, 311–350 (2016).
Etzion T., Vardy A.: Error-correcting codes in projective space. IEEE Trans. Inf. Theory 57, 1165–1173 (2011).
Etzion T., Vardy A.: Automorphisms of codes in the Grassmann scheme, arXiv:1210.5724 (2012).
Etzion T., Wachter-Zeh A.: Vector network coding based on subspace codes outperforms scalar linear network coding. In: Proc. of IEEE Int. Symp. on Inform. Theory (ISIT), pp. 1949–1953. Barcelona, Spain (2016).
Etzion T., Wachter-Zeh A.: Vector network coding based on subspace codes outperforms scalar linear network coding. IEEE Trans. Inf. Theory 64, 2460–2473 (2018).
Etzion T., Zhang H.: Grassmannian codes with new distance measures for network coding. IEEE Trans. Inf. Theory 65, 4131–4142 (2019).
Euler L.: Consideratio quarumdam serierum quae singularibus proprietatibus sunt praeditae, Novi Commentarii Academiae Scientiarum Petropolitanae 3 (1750–1751) pp. 10–12, 86–108; Opera Omnia, Ser. I, vol. 14, B.G. Teubner, Leipzig, pp. 516–541 (1925).
Frankl P., Rödl V.: Near perfect coverings in graphs and hypergraphs. Eur. J. Comb. 6, 317–326 (1985).
Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21, 1–12 (1985).
Gasper G., Rahman M.: Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, vol. 96. Cambridge University Press, Cambridge (2004).
Gluesing-Luerssen H., Troha C.: Construction of subspace codes through linkage. Adv. Math. Commun. 10, 525–540 (2016).
Goldman J.R., Rota G.C.: On the foundations of combinatorial theory IV: finite vector spaces and Eulerian generating functions. Stud. Appl. Math. 49, 239–258 (1970).
Heinlein D., Honold T., Kiermaier M., Kurz S.: Generalized vector space partitions. Aust. J. Comb. 73, 162–178 (2019).
Heinlein D., Honold T., Kiermaier M., Kurz S., Wassermann A.: Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6. Des. Codes Cryptogr. 87, 375–391 (2019).
Heinlein D., Kiermaier M., Kurz S., Wassermann A.: Tables of subspace codes, arXiv preprint arXiv:1601.02864 (2016).
Heinlein D., Kurz S.: Asymptotic bounds for the sizes of constant dimension codes and an improved lower bound. In: International Castle Meeting on Coding Theory and Applications, pp. 163–191. Springer (2017).
Heinlein D., Kurz S.: Binary subspace codes in small ambient spaces. Adv. Math. Commun. 12, 817–839 (2018).
Hishida T., Jimbo M.: Cyclic resolutions of the BIB design in \(\operatorname{PG}(5,2)\). Aust. J. Comb. 22, 73–80 (2000).
Ho T., Koetter R., Médrad M., Karger D.R., Effros M.: The benefits of coding over routing in randomized setting. In: Proc. of IEEE Int. Symp. on Inform, Theory (ISIT). Yokohama, Japan (2003).
Ho M., Médrad R., Koetter D.R., Karger M., Effros J., Shi B., Leong A.: A random linear network coding approach to multicast. IEEE Trans. Inf. Theory 52, 4413–4430 (2006).
Honold T., Kiermaier M., Kurz S.: Constructions and bounds for mixed-dimension subspace codes. Adv. Math. Commun. 10, 649–682 (2016).
Honold T., Kiermaier M., Kurz S.: Johnson type bounds for mixed dimension subspace codes. Electron. J. Comb., to appear.
Honold T., Kiermaier M., Kurz S.: Optimal binary subspace codes of length \(6\), constant dimension \(3\) and minimum distance \(4\). Contemp. Math. 632, 157–176 (2015).
Honold T., Kiermaier M., Kurz S.: Partial spreads and vector space partitions, In: Network Coding and Subspace Designs, pp. 131–170. Springer, New York (2018).
Hurley M.R., Khadka B.K., Magliveras S.S.: Some new large sets of geometric designs of type. J. Algebra Comb. Discret. Struct. Appl. 3, 165–176 (2016).
Johnson S.: A new upper bound for error-correcting codes. IRE Trans. Inf. Theory 8(3), 203–207 (1962).
Kiermaier M., Kurz S.: On the lengths of divisible codes. IEEE Trans. Inf. Theory, to appear.
Kiermaier M., Kurz S., Wassermann A.: The order of the automorphism group of a binary q-analog of the Fano plane is at most two. Des. Codes Cryptogr. 86(2), 239–250 (2018).
Kiermaier M., Laue R., Wassermann A.: A new series of large sets of subspace designs over the binary field. Des. Codes Cryptogr. 86(2), 251–268 (2018).
Koelink E., van Assche W.: Leonhard Euler and a \(q\)-analogue of the logarithm. Proc. Am. Math. Soc. 137, 1663–1676 (2009).
Koetter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54, 3579–3591 (2008).
Kohnert A., Kurz S.: Construction of large constant dimension codes with a prescribed minimum distance. In: Mathematical Methods in Computer Science, pp. 31–42. Springer (2008).
Kurz S.: A note on the linkage construction for constant dimension codes, arXiv:1906.09780 (2019).
Kurz S.: Packing vector spaces into vector spaces. Aust. J. Comb. 68(1), 122–130 (2017).
Li S.-Y.R., Yeung R.W., Cai N.: Linear network coding. IEEE Trans. Inf. Theory 49, 371–381 (2003).
Mateva Z.T., Topalova S.T.: Line spreads of \(\operatorname{PG}(5,2)\). J. Comb. Des. 17(1), 90–102 (2009).
Mills W.H., Mullin R.C.: Coverings and Packings in Contemporary Design Theory: A Collection of Surveys, Dinitz J.H., Stinson, D.R. (eds.). Wiley, New York (1992).
Miyakawa M., Munemasa A., Yoshiara S.: On a class of small \(2\)-designs over \({\rm GF}(q)\). J. Comb. Des. 3, 61–77 (1995).
Puchinger S.: Personal communication (2018).
Ray-Chaudhuri D.K., Singhi N.M.: \(q\)-analogues of \(t\)-designs and their existence. Linear Algebra Appl. 114(115), 57–68 (1989).
Rödl V.: On a packing and covering problem. Eur. J. Comb. 6(1), 69–78 (1985).
Roth R.M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37, 328–336 (1991).
Roth R.M.: Personal communication (2016).
Sarmiento J.: On point-cyclic resolutions of the \(2-(63,7,15)\) design associated with \(PG(5,2)\). Graph. Comb. 18, 621–632 (2002).
Schwartz M.: Personal communication (2018).
Schönheim J.: On maximal systems of \(k\)-tuples. Studia Scientiarum Mathematicarum Hungarica 1, 363–368 (1966).
Stinson D.R., Wei R., Yin J.: Packings in The CRC Handbook of Combinatorial Designs. In: Colbourn C.J. , Dinitz J.H. (eds.) Wiley, New York (2006).
Suzuki H.: \(2\)-designs over \({\rm GF}(2^m)\). Graph. Comb. 6, 293–296 (1990).
Suzuki H.: On the inequalities of \(t\)-designs over a finite field. Eur. J. Comb. 11, 601–607 (1990).
Suzuki H.: \(2\)-designs over \({\rm GF}(q)\). Graph Comb. 8, 381–389 (1992).
Thomas S.: Designs over finite fields. Geom. Dedicata 21, 237–242 (1987).
Thomas S.: Designs and partial geometries over finite fields. Geom. Dedicata 63, 247–253 (1996).
Tits J.: Sur les analogues algébriques des groupes semi-simples complexes, In: Colloque d’Algébre Supèrieure, tenu á Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques Établissements Ceuterick, pp. 261–289. Librairie Gauthier-Villars, Louvain (1957).
Topalova S., Zhelezova S.: 2-spreads and transitive and orthogonal 2-parallelisms of PG(5,2). Graphs Comb. 26, 727–735 (2010).
Wang J.: Quotient sets and subset-subspace analogy. Adv. Appl. Math. 23, 333–339 (1999).
Ward H.N.: An introduction to divisible codes. Des. Codes Cryptogr. 17(1), 73–79 (1999).
Wettl F.: On parallelisms of odd dimensional finite projective spaces. Periodica Polytechnica. Transp. Eng. 19(1–2), 111–116 (1991).
Xia S.-T., Fu F.-W.: Johnson type bounds on constant dimension codes. Des. Codes Cryptogr. 50(2), 163–172 (2009).
Acknowledgements
The third author would like to thank TÜBİTAK BİDEB for the financial support under programs 2211 and 2214/A. The third author also thanks the Computer Science Department at the Technion for their warm-hearted hospitality and support during his stay at the university between November 2017 and May 2018.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography 2019”
Appendix: Tables
Appendix: Tables
In this section we collect some numerical results on \({{{\mathcal {A}}}}_q(n,k,t;\lambda )\), i.e., the tightest lower and upper bounds known to us. We will mainly focus on the binary case \(q=2\) and small values of \(\lambda \) and give just a few tables for \(q=3\). We only provide results for \(\lambda >1\) and refer the interested reader to http://subspacecodes.uni-bayreuth.de [39] for \(\lambda =1\). In order to point to the origin of the bound or an exact formula we use the following abbreviations:
-
\(^a\): Bounds for arcs, see e.g. [3] and the end of Sect. 3.3.
-
\(^b\): Take all subspaces, see Lemma 2.
-
\(^c\): All subspaces not containing a point, see Proposition 11.
-
\(^g\): Constructions for \(q-GDDs\), a q-analog of group divisible designs, see [11].
-
\(^h\): Restriction to a hyperplane, see Proposition 4.
-
\(^i\): Intersection arguments, see Lemma 8, Propositions 10, and 6.
-
\(^{j}\): Improved Johnson bound for points, see Proposition 5.
-
\(^{k}\): Known results for packing designs, see e.g. [8].
-
\(^l\): Integer linear programming formulations.
-
\(^p\): Existence of parallel packings, see Theorem 4 in connection with the literature on large sets, and Proposition 9 in connection with the literature of (partial) parallelisms.
-
\(^q\): The quadratic upper bound from Proposition 7 based on the second-order Bonferroni Inequality.
-
\(^t\): Integer linear programming formulations with prescribed automorphisms.
-
\(^x\): Generalized linkage construction, see Theorem 3 and Corollary 2.
We remark that \({{{\mathcal {A}}}}_2(6,3,2;4)\ge 360\), which was obtained in the context of q-GDDs [11], was also obtained in [21]. The upper bound for \({{{\mathcal {A}}}}_2(6,4,2;2)\), based on integer linear programming, need a more detailed explanation, see Proposition 8, which is marked by a \(\star \) in the corresponding table. For upper bounds marked by \(^i\) we refer to the discussion directly after Proposition 6 for the details (See Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 and 27.
Rights and permissions
About this article
Cite this article
Etzion, T., Kurz, S., Otal, K. et al. Subspace packings: constructions and bounds. Des. Codes Cryptogr. 88, 1781–1810 (2020). https://doi.org/10.1007/s10623-020-00732-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-020-00732-z
Keywords
- Subspace packings
- Generalized combination networks
- Vector network coding
- q-analogs of designs
- Grassmannian codes
- Rank-metric codes