Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A roadmap for Generalized Plane Waves and their interpolation properties

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This work focuses on the study of partial differential equation (PDE) based basis function for Discontinuous Galerkin methods to solve numerically wave-related boundary value problems with variable coefficients. To tackle problems with constant coefficients, wave-based methods have been widely studied in the literature: they rely on the concept of Trefftz functions, i.e. local solutions to the governing PDE, using oscillating basis functions rather than polynomial functions to represent the numerical solution. Generalized Plane Waves (GPWs) are an alternative developed to tackle problems with variable coefficients, in which case Trefftz functions are not available. In a similar way, they incorporate information on the PDE, however they are only approximate Trefftz functions since they don’t solve the governing PDE exactly, but only an approximated PDE. Considering a new set of PDEs beyond the Helmholtz equation, we propose to set a roadmap for the construction and study of local interpolation properties of GPWs. Identifying carefully the various steps of the process, we provide an algorithm to summarize the construction of these functions, and establish necessary conditions to obtain high order interpolation properties of the corresponding basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.waveller.com/Waveller_Acoustics/waveller_acoustics.shtml.

References

  1. Antunes, P.: A numerical algorithm to reduce ill-conditioning in meshless methods for the Helmholtz equation. Numer. Algorithms 79(3), 879–897 (2018)

    Article  MathSciNet  Google Scholar 

  2. Babuska, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40(4), 727–758 (1997)

    Article  MathSciNet  Google Scholar 

  3. Babuska, I., Zhang, Z.: The partition of unity method for the elastically supported beam. In: Symposium on Advances in Computational Mechanics, Computer Methods in Applied Mechanics and Engineering, vol. 5. 152(1–2), pp. 1–18 (1998)

  4. Buet, C., Despres, B., Morel, G.: Trefftz Discontinuous Galerkin basis functions for a class of Friedrichs systems coming from linear transport, hal-01964528

  5. Cessenat, O.: In: Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques. Problèemes de Helmholtz 2D et de Maxwell 3D, Université Paris 9 Dauphine (1996)

  6. Constantine, G.M., Savits, T.H.: A multivariate Faà di Bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503–520 (1996)

    Article  Google Scholar 

  7. Craik, A.D.D.: Prehistory of Faa di Bruno’s formula. Am. Math. Mon. 112(2), 119–130 (2005)

  8. Eckart, C.: The propagation of gravity waves from deep to shallow water, Circular 20. National Bureau of Standards, pp. 165–173 (1952)

  9. Farhat, C., Harari, I., Franca, L.P.: The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190(48), 6455–6479 (2001)

    Article  MathSciNet  Google Scholar 

  10. Fix, G.J., Gulati, S., Wakoff, G.I.: On the use of singular functions with finite element approximations. J. Comput. Phys. 13, 209–228 (1973)

    Article  MathSciNet  Google Scholar 

  11. Gittelson, C.J., Hiptmair, R.: Dispersion analysis of plane wave discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 98(5), 313–323 (2014)

    Article  MathSciNet  Google Scholar 

  12. Hardy, M.: Combinatorics of partial derivatives. Electron. J. Comb. 13(1), 13 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Hiptmair, R., Moiola, A., Perugia, I.: A survey of Trefftz methods for the Helmholtz equation. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 114, pp. 237–278. Springer, Berlin (2016)

  14. Huttunen, T., Monk, P., Kaipio, J.P.: Computational aspects of the ultra-weak variational formulation. J. Comput. Phys. 182(1), 27–46 (2002)

    Article  MathSciNet  Google Scholar 

  15. Imbert-Gérard, L.-M.: Interpolation properties of generalized plane waves. Numer. Math. 131, 683–711 (2015)

    Article  MathSciNet  Google Scholar 

  16. Imbert-Gérard, L.-M.: Generalized plane waves for varying coefficients. In: Proceedings of Waves, Karslruhe (2015)

  17. Imbert-Gerard, L.-M., Despres, B.: A generalized plane-wave numerical method for smooth nonconstant coefficients. IMA J. Numer. Anal. (2013). https://doi.org/10.1093/imanum/drt030

    Article  MATH  Google Scholar 

  18. Imbert-Gérard, L.-M., Monk, P.: Numerical simulation of wave propagation in inhomogeneous media using Generalized Plane Waves. ESAIM: M2AN 51(4), 1387–1406 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Imbert-Gérard, L.-M.: Well-posedness and generalized plane waves simulations of a 2D mode conversion model. J. Comput. Phys. 303, 105–124 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kita, E., Kamiya, N.: Trefftz method: an overview. Adv. Eng. Softw. 24, 3–12 (1995)

    Article  Google Scholar 

  21. Kretzschmar, F., Moiola, A., Perugia, I., Schnepp, S.M.: A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems. IMA J. Numer. Anal. 36, 1599 (2016)

    Article  MathSciNet  Google Scholar 

  22. Kretzschmar, F., Schnepp, S.M., Tsukerman, I., Weiland, T.: Discontinuous Galerkin methods with Trefftz approximations. J. Comput. Appl. Math. 270, 211–222 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, New York (1979)

    Google Scholar 

  24. Lieu, A., Gabard, G., Bériot, H.: A comparison of high-order polynomial and wave-based methods for Helmholtz problems. J. Comput. Phys. 321, 105–125 (2016)

    Article  MathSciNet  Google Scholar 

  25. Luostari, T., Huttunen, T., Monk, P.: The ultra weak variational formulation using Bessel basis functions. Commun. Comput. Phys. 11(2), 400–414 (2012)

    Article  MathSciNet  Google Scholar 

  26. Ma, T.-W.: Higher chain formula proved by combinatorics. Electron. J. Combin. 16(1), 7 (2009)

    Article  MathSciNet  Google Scholar 

  27. Maunder, E.A.W.: Trefftz in translation. Comput. Assist. Mech. Eng. Sci. 10 (2003)

  28. Melenk, J.M.: On Generalized Finite Element Methods, Ph.D. thesis. The University of Maryland (1995)

  29. Melenk, J.M., Babuska, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)

    Article  MathSciNet  Google Scholar 

  30. Mikhlin, S.G.: Variational Methods in Mathematical Physics. Pergamon Press; distributed by Macmillan, New York (1964)

  31. Morel, G., Buet, C., Despres, B.: Trefftz discontinuous Galerkin method for Friedrichs systems with linear relaxation: application to the P 1 Model. Comput. Methods Appl. Math. 18(3), 521–557 (2018)

    Article  MathSciNet  Google Scholar 

  32. Moiola, A., Perugia, I.: A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math. 138(2), 389–435 (2018)

    Article  MathSciNet  Google Scholar 

  33. Rektorys, K.: Variational Methods in Mathematics, Science and Engineering. Springer, Berlin (2012)

    MATH  Google Scholar 

  34. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method, Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc, Englewood Cliffs (1973)

    MATH  Google Scholar 

  35. Trefftz, E.: In: Ein gegenstuck zum ritzschen verfahren, pp. 131–137. Orell Fussli Verlag, Zurich (1926)

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants No. DMS-1818747 and DMS-2105487.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise-Marie Imbert-Gérard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Chain rule in dimension 1 and 2

For the sake of completeness, this section is dedicated to describing the formula to derive a composition of two functions, in dimensions one and two. A wide bibliography about this formula is to be found in [26]. It is linked to the notion of partition of an integer or the one of a set. The 1D version is not actually used in this work but is displayed here as a comparison with a 2D version, mainly concerning this notion of partition.

1.1 Faa Di Bruno formula

Faa Di Bruno formula gives the mth derivative of a composite function with a single variable. It is named after Francesco Faa Di Bruno, but was stated in earlier work of Louis F.A. Arbogast around 1800, see [7].

If f and g are functions with sufficient derivatives, then

$$\begin{aligned} { \frac{d^m}{dx^m}f(g(x)) = m!\sum f^{(\sum _k b_k)} (g(x)) \prod _{k=1}^{m} \frac{1}{b_k!}\left( \frac{g^{(k)}(x)}{k!} \right) ^{b_k}, } \end{aligned}$$

where the sum is over all different solutions in nonnegative integers \((b_k)_{k\in [\![1,m]\!]}\) of \(\sum _k k b_k = m\). These solutions are actually the partitions of m.

1.2 Bivariate version

The multivariate formula has been widely studied, the version described here is the one from [6] applied to dimension 2. A linear order on \({\mathbb {N}}^2\) is defined by: \(\forall (\mu ,\nu )\in \left( {\mathbb {N}}^2\right) ^2\), the relation \(\mu \prec \nu \) holds provided that

  1. 1.

    \(\mu _1+\mu _2<\nu _1+\nu _2 \); or

  2. 2.

    \(\mu _1+\mu _2=\nu _1+\nu _2 \) and \(\mu _1<\nu _1\).

If f and g are functions with sufficient derivatives, then

$$\begin{aligned}&\partial _x^i \partial _y^j f(g(x,y)) \\&\quad =i!j! \sum _{1\le \mu \le i+j} f^{\mu }(g(x,y)) \sum _{s=1}^{i+j} \sum _{p_s((i,j),\mu )} \prod _{l=1}^s \frac{1}{k_l!}\left( \frac{1}{i_l!j_l!} \partial _x^{i_l}\partial _y^{j_l} (g(x,y))\right) ^{k_l}, \end{aligned}$$

where the partitions of (ij) are defined by the following sets: \(\forall \mu \in [\![1,i+j]\!]\), \(\forall s\in [\![1,i+j]\!]\), \(p_s((i,j),\mu )\) is equal to

$$\begin{aligned}&\left\{ (k_1,\ldots ,k_s;(i_1,j_1),\ldots ,(i_s,j_s)){:}\,k_i>0,0\prec (i_1,j_1)\right. \\&\quad \left. \prec \cdots \prec (i_s,j_s), \sum _{l=1}^s k_l=\mu ,\sum _{l=1}^s k_li_l=i,\sum _{l=1}^s k_lj_l=j\right\} . \end{aligned}$$

See [12] for a proof of the formula interpreted in terms of collapsing partitions.

Faa di Bruno

The multivariate formula has been widely studied, the version described here is the one from [6] applied to dimension 2. A linear order on \({\mathbb {N}}^2\) is defined by: \(\forall (\mu ,\nu )\in \left( {\mathbb {N}}^2\right) ^2\), the relation \(\mu \prec \nu \) holds provided that

  1. 1.

    \(\mu _1+\mu _2<\nu _1+\nu _2 \); or

  2. 2.

    \(\mu _1+\mu _2=\nu _1+\nu _2 \) and \(\mu _1<\nu _1\).

If f and g are functions with sufficient derivatives, then

$$\begin{aligned} \partial _x^i \partial _y^j f(g(x,y))= & {} i!j! \sum _{1\le \mu \le i+j} f^{(\mu )}(g(x,y)) \sum _{s=1}^{i+j} \sum _{p_s((i,j),\mu )} \prod _{l=1}^s \frac{1}{k_l!}\\&\quad \left( \frac{1}{i_l!j_l!} \partial _x^{i_l}\partial _y^{j_l} (g(x,y))\right) ^{k_l},\\ \partial _x^k \partial _y^{\ell -k} e^{P(x,y)}= & {} k!{(\ell -k)}! \sum _{1\le \mu \le \ell } e^{P(x,y)} \sum _{s=1}^{\ell } \sum _{p_s((k,\ell -k),\mu )} \prod _{m=1}^s \frac{1}{k_m!}\\&\quad \left( \frac{1}{i_m!j_m!} \partial _x^{i_m}\partial _y^{j_m} P(x,y)\right) ^{k_m}, \end{aligned}$$

where the partitions of (ij) are defined by the following sets: \(\forall \mu \in [\![1,i+j]\!]\), \(\forall s\in [\![1,i+j]\!]\), \(p_s((i,j),\mu )\) is equal to

$$\begin{aligned}&\left\{ (k_1,\ldots ,k_s;(i_1,j_1),\cdots ,(i_s,j_s)):k_i>0,0\prec (i_1,j_1)\right. \\&\quad \left. \prec \cdots \prec (i_s,j_s), \sum _{l=1}^s k_l=\mu ,\sum _{l=1}^s k_li_l=i,\sum _{l=1}^s k_lj_l=j\right\} . \end{aligned}$$

Note that s is the number of different terms appearing in the product, while \(\mu \) is the number of terms in the product counting multiplicity, \(k_m\) is the multiplicity of the mth term in the product, while \(p_s\) represents the possible partitions of (ij).

Note that since \(k_m>0\), the condition \(\sum _{m=1}^s k_m=\mu \) implies that \(\mu = \sum _{m=1}^s k_m\ge \sum _{m=1}^s 1 = s\).

Polynomial formulas

Here are two important comments. The first one concerns the product of polynomials. Assume that \(\min (D_1,D_2)\ge q\). Then the product of two polynomials, respectively of degree \(D_1\) and \(D_2\), satisfies:

$$\begin{aligned}&\left( \sum _{i_1=0}^{D_1}\sum _{j_1=0}^{D_1-i_1} p_{i_1,j_1}x^{i_1}y^{j_1}\right) \left( \sum _{i_2=0}^{D_2}\sum _{j_2=0}^{D_2-i_2} q_{i_2,j_2}x^{i_2}y^{j_2}\right) \\&\quad = \sum _{i=0}^{q-1}\sum _{j=0}^{q-1-i} \left( \sum _{{\tilde{i}}=0}^i\sum _{{\tilde{j}}=0}^j p_{i-{\tilde{i}},j-{\tilde{j}}}q_{{\tilde{i}},{\tilde{j}}} \right) x^iy^j+O(h^q). \end{aligned}$$

Since in particular the summation indices are such that \(0\le {\tilde{i}}\le i\), \(0\le i-{\tilde{i}}\le i\), \(0\le {\tilde{j}}\le j\), and \(0\le j-{\tilde{j}}\le j\), the only coefficients \(p_{i,j}\) and \(q_{i,j}\) appearing in the \((I_0,J_0)\) coefficient of the product have a length of the multi-index \(i+j\le I_0+J_0\). As a consequence, the only coefficients of several polynomials appearing in the \((I_0,J_0)\) coefficient of the product these several polynomials have a length of the multi-index \(i+j\le I_0+J_0\). The second comment turns to the derivative of a polynomial:

$$\begin{aligned} \partial _x^I\partial _y^J\left( \sum _{i=0}^{D}\sum _{j=0}^{D-i} p_{i,j}x^{i}y^{j}\right) = \sum _{i=0}^{D-I-J}\sum _{j=0}^{D-I-J-i} \frac{(i+I)!}{i!}\frac{(j+J)!}{j!} p_{i+I,j+J} x^{i}y^{j}. \end{aligned}$$

In particular the only coefficients \(p_{i,j}\) appearing in the \((I_0,J_0)\) coefficient of the derivative has a length of the multi-index \(i+j = I+J+I_0+J_0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbert-Gérard, LM., Sylvand, G. A roadmap for Generalized Plane Waves and their interpolation properties. Numer. Math. 149, 87–137 (2021). https://doi.org/10.1007/s00211-021-01220-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01220-9

Mathematics Subject Classification

Navigation