Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On a model of thermoviscoelasticity of Jeffreys–Oldroyd type

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the plane case, the initial–boundary value problem for a thermoelastic medium model with a rheological relation determined by the Jeffreys–Oldroyd model is shown to be nonlocally weakly solvable. The study is based on separating the system, reducing it to an operator equation, and performing an iterative process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Zvyagin, “On the solvability of some initial–boundary value problems for mathematical models of motion of nonlinear viscous and viscoelastic fluids,” Sovrem. Mat. Fundam. Napravlen. 2, 57–59 (2003).

    MathSciNet  Google Scholar 

  2. V. G. Zvyagin and V. P. Orlov, “On certain mathematical models in continuum thermomechanics,” J. Fixed Point Theory Appl. 15 (1), 3–47 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Reiner, Lectures on Theoretical Rheology (North-Holland, Amsterdam, 1960; Fizmatgiz, Moscow, 1965).

    MATH  Google Scholar 

  4. J. G. Oldroyd, “Non-Newtonian flow of liquids and solids,” Rheology: Theory and Applications (Academic, New York, 1956), Vol. 1, pp. 653–682.

    Chapter  Google Scholar 

  5. A. P. Oskolkov, “Initial-boundary value problems for equations of motion of Kelvin–Voigt fluids and Oldroyd fluids,” Proc. Steklov Inst. Math. 179, 137–182 (1989).

    MATH  Google Scholar 

  6. V. G. Zvyagin and D. A. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics (Walter de Gruyter, Berlin, 2008).

    Book  MATH  Google Scholar 

  7. D. A. Vorotnikov and V. G. Zvyagin, “On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium,” Abstract Appl. Anal. 2004 (10), 815–829 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Consiglieri, “Weak solution for a class of non-Newtonian fluids with energy transfer,” J. Math. Fluid Mech. 2, 267–293 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Consiglieri, “Friction boundary conditions on thermal incompressible viscous flows,” Ann. Mat. 187, 647–665 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Pawlow and W. Zajaczkowski, “Unique solvability of a nonlinear thermoviscoelasticity system arising in shape memory materials,” Discrete Cont. Dyn. Syst. Ser. S, Special Issue on Thermodynamics and Phase Change 4, 441–466 (2011).

    MathSciNet  MATH  Google Scholar 

  11. E. Feireisl and J. Málek, “On the Navier–Stokes equations with temperature-dependent transport coefficients,” Differ. Equations Nonlinear Mech. 2006, article ID 90616, 14 pages (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. V. Zvyagin and V. P. Orlov, “Solvability of the thermoviscoelasticity problem for linearly elastically retarded Voigt fluid,” Math. Notes 97 (5), 694–708 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. P. Orlov and M. I. Parshin, “On one problem of dynamics of thermoviscoelastic medium of Oldroyd type,” Russ. Math. 58 (5), 57–62 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. P. Orlov and M. I. Parshin, “On a problem in the dynamics of a thermoviscoelastic medium with memory,” Comput. Math. Math. Phys. 55 (4), 650–665 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary Value Problems in Nonhomogeneous Fluid Mechanics (Nauka, Novosibirsk, 1983) [in Russian].

    MATH  Google Scholar 

  16. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (Springer-Verlag, Berlin, 1978; Mir, Moscow, 1980).

    MATH  Google Scholar 

  17. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1979; Mir, Moscow, 1981).

    MATH  Google Scholar 

  18. K. Yosida, Functional Analysis (Springer-Verlag, Berlin, 1965; Mir, Moscow, 2009).

    MATH  Google Scholar 

  19. V. G. Litvinov, Motion of Nonlinear Viscous Fluids (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Zvyagin.

Additional information

Original Russian Text © V.G. Zvyagin, V.P. Orlov, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 10, pp. 1821–1830.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, V.G., Orlov, V.P. On a model of thermoviscoelasticity of Jeffreys–Oldroyd type. Comput. Math. and Math. Phys. 56, 1803–1812 (2016). https://doi.org/10.1134/S0965542516100158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516100158

Keywords

Navigation