Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Rheological Consequence of the Behavior of Thermoviscoelastic Substances in the Presence of an Instantaneous Point Heat Source

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A two-dimensional generalized thermoviscoelastic dynamic problem in the presence of a heat source is studied. The governing equations are expressed in the Laplace–Fourier transform domain and are solved with the use of the eigenvalue approach. The inversions are done numerically by the Bellman method and Gauss quadrature technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15, 299–309 (1967).

    Article  MATH  Google Scholar 

  2. A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elasticity, 2, 1–7 (1972).

    Article  MATH  Google Scholar 

  3. A. D. Drozdov, A constitutive model in thermoviscoelasticity, Mech. Res. Commun., 23, 543–548 (1996).

    Article  MATH  Google Scholar 

  4. M. I. A. Othman and Y. Song, Effect of rotation on plane waves of generalized electromagneto-thermo-viscoelasticity with two relaxation times, Appl. Math. Model., 32, 811–825 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Kar and M. Kanoria, Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect, Appl. Math. Model., 33, 3287–3298 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. A. Ezzat, M. Zakaria, and A. S. El-Karamany, Effects of modifi ed Ohms and Fouriers laws on generalized magnetoviscoelastic thermoelasticity with relaxation volume properties, Int. J. Eng. Sci., 48, 460–472 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. R. Kundu and B. Mukhopadhyay, A thermoviscoelastic problem of an infi nite medium with a spherical cavity using generalized theory of thermoelasticity, Math. Comput. Model., 41, 25–32 (2005).

    Article  MATH  Google Scholar 

  8. M. K. Mondal and B. Mukhopadhyay, A two-temperature thermo-visco-elastic problem with rheological properties, Int. J. Appl. Math. Mech., 9, 51–68 (2013).

    Google Scholar 

  9. J. D. Ferry, Mechanical properties of substances of high molecular weight. Dispersion in concentrated polymer solutions and its dependence on temperature and concentration, J. Am. Chem. Soc., 72, 37–46 (1953).

  10. M. Aouadi and A. S. El-Karamany, The relaxation effects of volume properties in two-dimensional generalized thermoviscoelastic problem, Appl. Math. Comput., 151, 689–711 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Muki and E. Sternberg, On transient thermal stresses in visco-elastic material with temperature dependent properties, J. Appl. Mech., 28, 193–207 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Aouadi, Generalized thermo-piezoelectric problem with temperature-dependent properties, Solids Struct., 43, 6347–6358 (2006).

    Article  MATH  Google Scholar 

  13. M. K. Mondal and B. Mukhopadhyay, A cylindrical problem with rheological volume, density property on thermovisco-elastic medium in magnetic fi eld, Int. J. Appl. Math. Mech., 9, No. 2, 22–38 (2013).

    Google Scholar 

  14. A. S. El-Karamany, Deformation of a non-homogeneous viscoelastic hollow space, Eng. Trans., Warsaw, 31, 267 (1983).

  15. V. A. Lomakin, The Theory of Elasticity of Non-Homogeneous Bodies, Moscow State University Press, Moscow (1976).

    Google Scholar 

  16. R. Bellman, R. E. Kalaba, and J. A. Lockett, Numerical Inversion of the Laplace Transform, American Elsevier Pub. Co., New York (1966).

    MATH  Google Scholar 

  17. M. A. Ezzat, M. I. Othman, and A. S. El-Karamany, State space approach to generalized thermoviscoelasticity with two relaxation times, Int. J. Eng. Sci., 40, 283–302 (2002).

    Article  MATH  Google Scholar 

  18. W. Nowacki, Some dynamic problems of thermoviscoelasticity, Arch. Mech. Stos., 11, 259–283 (1959).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Mondal.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 1, pp. 269–277, January–February, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, M.K., Mukhopadhyay, B. Rheological Consequence of the Behavior of Thermoviscoelastic Substances in the Presence of an Instantaneous Point Heat Source. J Eng Phys Thermophy 89, 280–288 (2016). https://doi.org/10.1007/s10891-016-1376-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1376-x

Keywords

Navigation