Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Convergence of Levenberg-Marquardt Method for Solving Nonlinear Systems

  • Conference paper
Bio-Inspired Computing - Theories and Applications

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 472))

Abstract

Levenberg-Marquardt (L-M forshort) method is one of the most important methods for solving systems of nonlinear equations. In this paper, we consider the convergence under \(\lambda_{k}=\min(\|F_{k}\|,\|J_{k}^{T}F_{k}\|)\) of L-M method. We will show that if  ∥ F(x k ) ∥ provides a local error bound, which is weaker than the condition of nonsingularity for the system of nonlinear equations, the sequence generated by the L-M method converges to the point of the solution set quadratically. As well, numerical experiments are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ma, C., Jiang, L.: Some Research on Levenberg-Marquardt Method for the Nonlinear Equations. Applied Mathematics and Computation 184, 1032–1040 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Marquardt, D.W.: An Algorithm for Least-squares Estimation of Nonlinear Inequalities. SIAM Journal Applied Mathematics 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  4. Fan, J., Pan, J.: A Note on the Levenberg-Marquardt Parameter. Applied Mathematics and Computation 207, 351–359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mor, J.J., Garbow, B.S., Hillstrom, K.H.: Testing Unconstrained Optimization Software. ACM Trans. on Mathematics Software 7, 17–41 (1981)

    Article  Google Scholar 

  6. Levenberg, K.: A Method for the Solution of Nonlinear Problems in Least Squares, Quart. Applied Mathematics 2, 164–166 (1944)

    MathSciNet  MATH  Google Scholar 

  7. Yamashita, N., Fukushima, M.: On the Rate of Convergence of the Levenberg-Marquardt Method. Computing 15, 239–249 (2001)

    MathSciNet  Google Scholar 

  8. Liu, Y., Chen, Y.: On the Convergence of a New Levenberg-Marquardt Method. Mathematica Numerica Sinica 27, 55–62 (2005)

    Google Scholar 

  9. Yuan, Y.X., Sun, W.Y.: Optimization Theory and Method. Scince Press, Beijing (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, M., Xu, F., Zhu, Z., Jiang, L., Geng, X. (2014). On the Convergence of Levenberg-Marquardt Method for Solving Nonlinear Systems. In: Pan, L., Păun, G., Pérez-Jiménez, M.J., Song, T. (eds) Bio-Inspired Computing - Theories and Applications. Communications in Computer and Information Science, vol 472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45049-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45049-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45048-2

  • Online ISBN: 978-3-662-45049-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics