Abstract
A modified Levenberg–Marquardt methods for solving system of nonlinear equations is described and analysed in this paper. Specifically, we propose a convex combination of \(\Vert F_k\Vert ^\delta \) and \(\left\| J_k^TF_k\right\| ^\delta \) with \(\delta \in [1,2]\) for the LM parameter and analyse the convergence of this modified Levenberg–Marquardt method under the \(\gamma \)-Hölderian local error bound of the underlying function and the v-Hölderian continuity of its Jacobian. The results show that, under some suitable relationships of exponents v, \(\gamma \) and \(\delta \), the modified Levenberg–Marquardt method converges to the solution set of the system of nonlinear equations at least superlinearly. Numerical experiments show the new algorithm is efficient.
Similar content being viewed by others
References
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)
Sun, W., Yuan, Y.: Optimization Theory and Methods: Nonlinear Programming. Springer, Heidelberg (2006)
Andrei, N.: Modern Numerical Nonlinear Optimization. Springer, Cham (2022)
Xie, L., Ding, J., Ding, F.: Gradient based iterative solutions for general linear matrix equations. Comput. Math. Appl. 58(7), 1441–1448 (2009)
Xie, L., Liu, Y., Yang, H.: Gradient based and least squares based iterative algorithms for matrix equations \(AXB+CX^TD=F\). Appl. Math. Comput. 217(5), 2191–2199 (2010)
Li, M., Liu, X.: Iterative identification methods for a class of bilinear systems by using the particle filtering technique. Int. J. Adapt. Control Signal Process. 35(10), 2056–2074 (2021)
Ding, F., Chen, T.: Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Trans. Automat. Control 50(9), 1436–1441 (2005)
Li, M., Liu, X.: Maximum likelihood hierarchical least squares-based iterative identification for dual-rate stochastic systems. Int. J. Adapt. Control Signal Process. 35(2), 240–261 (2020)
Ding, F., Ling, X., Meng, D., Jin, X.-B., Alsaedi, A., Hayat, T.: Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model. J. Comput. Appl. Math. 369, 112575 (2020)
Ding, F., Chen, T.: Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica 40(10), 1739–1748 (2004)
Liu, Y., Ding, F., Shi, Y.: An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50(3), 962–970 (2014)
Ding, F., Liu, X., Ma, X.: Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition. J. Comput. Appl. Math. 301, 135–143 (2016)
Ding, F., Liu, X.P., Liu, G.: Identification methods for Hammerstein nonlinear systems. Digital Signal Process. 21(2), 215–238 (2011)
Deepho, J., Abubakar, A.B., Malik, M., Argyros, I.K.: Solving unconstrained optimization problems via hybrid cd-dy conjugate gradient methods with applications. J. Comput. Appl. Math. 405, 113823 (2022)
Chen, L., Ma, Y.: Shamanskii-like Levenberg–Marquardt method with a new line search for systems of nonlinear equations. J. Syst. Sci. Complexity 33(5), 1694–1707 (2020)
Chen, L.: A modified Levenberg–Marquardt method with line search for nonlinear equations. Comput. Optim. Appl. 65(3), 753–779 (2016)
Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)
Yuan, Y.: Recent advances in trust region algorithms. Math. Program. 151(1), 249–281 (2015)
Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg–Marquardt method. In: Alefeld, G., Chen, X. (eds.) Topics in Numerical Analysis: With Special Emphasis on Nonlinear Problems, pp. 239–249. Springer Vienna, Vienna (2001)
Moré, J.J., Garbow, B.S., Hillstrom, K.H.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)
Ahookhosh, M., Aragón Artacho, F.J., Fleming, Ronan M. T., Vuong, P.T.: Local convergence of the Levenberg–Marquardt method under Hölder metric subregularity. Adv. Comput. Math. 45(5–6), 2771–2806 (2019)
Wang, H., Fan, J.: Convergence rate of the Levenberg–Marquardt method under Hölderian local error bound. Optim. Methods Softw. 35(4), 767–786 (2020)
Guo, L., Lin, G.-H., Jane, J.Y.: Solving mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 166(1), 234–256 (2015)
Zheng, L., Chen, L., Ma, Y.: A variant of the Levenberg–Marquardt method with adaptive parameters for systems of nonlinear equations. AIMS Math. 7(1), 1241–1256 (2022)
Zheng, L., Chen, L., Tang, Y.: Convergence rate of the modified Levenberg–Marquardt method under Hölderian local error bound. Open Math. 20(1), 998–1012 (2022)
Fan, J., Yuan, Y.: On the convergence of a new Levenberg–Marquardt method. In Technical Report, AMSS, Chinese Academy of Sciences (2001)
Dennis, J.E., Jr., Schnable, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Society for Industrial and Applied Mathematics, Philadelphia (1983)
Fischer, A.: Local behavior of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94, 91–124 (2002)
Ma, C., Jiang, L.: Some research on Levenberg–Marquardt method for the nonlinear equations. Appl. Math. Comput. 184(2), 1032–1040 (2007)
Fan, J., Pan, J.: A note on the Levenberg–Marquardt parameter. Appl. Math. Comput. 207(2), 351–359 (2009)
Huang, B., Ma, C.: A shamanskii-like self-adaptive Levenberg–Marquardt method for nonlinear equations. Comput. Math. Appl. 77(2), 357–373 (2019)
Amini, K., Rostami, F., Caristi, G.: An efficient Levenberg–Marquardt method with a new LM parameter for systems of nonlinear equations. Optimization 67(5), 637–650 (2018)
Karas, E.W., Santos, S.A., Svaiter, B.F.: Algebraic rules for computing the regularization parameter of the Levenberg–Marquardt method. Comput. Optim. Appl. 65(3), 1–29 (2016)
Musa, Y.B., Waziri, M.Y., Halilu, A.S.: On computing the regularization parameter for the Levenberg–Marquardt method via the spectral radius approach to solving systems of nonlinear equations. J. Numer. Math. Stochast. 9(1), 80–94 (2017)
Fan, J., Yuan, Y.: On the quadratic convergence of the Levenberg–Marquardt method without nonsingularity assumption. Computing 74(1), 23–39 (2005)
Chen, L., Ma, Y., Su, C.: An efficient m-step Levenberg–Marquardt method for nonlinear equations. ChinaXiv, p. 15, (2016)
Yuan, Y.-X.: Problems on convergence of unconstrained optimization algorithms. In: Numerical Linear Algebra and Optimization, pp. 95–107. Science Press, Beijing, New York (1999)
Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21(5), 815–843 (1984)
Acknowledgements
This research was supported by NFSC Grant 11901061, the University Natural Science Research Project of Anhui Province Grant KJ2020ZD008 and the Natural Science Foundation of Anhui province Grant 2108085MF204. Part of this work was completed during authors’ visit to University of Texas at Arlington. They would like to thank Prof. Ren-Cang Li for his hospitality during the visit.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, L., Ma, Y. A modified Levenberg–Marquardt method for solving system of nonlinear equations. J. Appl. Math. Comput. 69, 2019–2040 (2023). https://doi.org/10.1007/s12190-022-01823-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-022-01823-x
Keywords
- System of nonlinear equations
- Levenberg–Marquardt method
- \(\gamma \)-Hölderian local error bound
- v-Hölderian continuity