Abstract
When learning models from data, the interpretability of the resulting model is often mandatory. For example, safety-related applications for automation and control require that the correctness of the model must be ensured not only for the available data but for all possible input combinations. Thus, understanding what the model has learned and in particular how it will extrapolate to unseen data is a crucial concern. The paper discusses suitable learning methods for classification and regression. For classification problems, we review an approach based on an ensemble of nonlinear low-dimensional submodels, where each submodel is simple enough to be completely verified by domain experts. For regression problems, we review related approaches that try to achieve interpretability by using low-dimensional submodels (for instance, MARS and tree-growing methods). We compare them with symbolic regression, which is a different approach based on genetic algorithms. Finally, a novel approach is proposed for combining a symbolic regression model, which is shown to be easily interpretable, with a Gaussian Process. The combined model has an improved accuracy and provides error bounds in the sense that the deviation from the verified symbolic model is always kept below a defined limit.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems, vol. 15, pp. 561–568. MIT Press, Cambridge (2003)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont (1984)
Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
Friedman, J.H.: Multivariate Adaptive Regression Splines. The Annals of Statistics 19(1), 1–67 (1991)
Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Springer, New York (2009), http://www-stat.stanford.edu/~tibs/ElemStatLearn
Lang, B.: Monotonic Multi-layer Perceptron Networks as Universal Approximators. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 31–37. Springer, Heidelberg (2005), doi:10.1007/11550907
Lisboa, P.J.G.: Industrial use of safety-related artificial neural networks. Contract research report 327/2001. Liverpool John Moores University (2001)
Loh, W.: Regression by parts: Fitting visually interpretable models with guide. In: Chen, C., Härdle, W., Unwin, A. (eds.) Handbook of Computational Statistics, pp. 447–468 (2008)
Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Transact. Neural Networks, 748–768 (2000)
Nusser, S., Otte, C., Hauptmann, W.: Interpretable ensembles of local models for safety-related applications. In: Proceedings of 16th European Symposium on Artificial Neural Networks (ESANN 2008), Brugge, Belgium, pp. 301–306 (2008)
Nusser, S., Otte, C., Hauptmann, W., Kruse, R.: Learning verifiable ensembles for classification problems with high safety requirements. In: Wang, L.S.L., Hong, T.P. (eds.) Intelligent Soft Computation and Evolving Data Mining: Integrating Advanced Technology, pp. 405–431. IGI Global (2009)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Schmidt, M., Lipson, H.: Distilling Free-Form Natural Laws from Experimental Data. Science 324(5923), 81–85 (2009)
Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)
Silverman, B.: Density Estimation for Statistics and Data Analysis (Chapman & Hall/CRC Monographs on Statistics & Applied Probability). Chapman and Hall/CRC (1986)
Taylor, B.J. (ed.): Methods and Procedures for the Verification and Validation of Artificial Neural Networks. Springer (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Otte, C. (2013). Safe and Interpretable Machine Learning: A Methodological Review. In: Moewes, C., Nürnberger, A. (eds) Computational Intelligence in Intelligent Data Analysis. Studies in Computational Intelligence, vol 445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32378-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-32378-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32377-5
Online ISBN: 978-3-642-32378-2
eBook Packages: EngineeringEngineering (R0)