Nothing Special   »   [go: up one dir, main page]

Skip to main content

Safe and Interpretable Machine Learning: A Methodological Review

  • Conference paper
Computational Intelligence in Intelligent Data Analysis

Part of the book series: Studies in Computational Intelligence ((SCI,volume 445))

Abstract

When learning models from data, the interpretability of the resulting model is often mandatory. For example, safety-related applications for automation and control require that the correctness of the model must be ensured not only for the available data but for all possible input combinations. Thus, understanding what the model has learned and in particular how it will extrapolate to unseen data is a crucial concern. The paper discusses suitable learning methods for classification and regression. For classification problems, we review an approach based on an ensemble of nonlinear low-dimensional submodels, where each submodel is simple enough to be completely verified by domain experts. For regression problems, we review related approaches that try to achieve interpretability by using low-dimensional submodels (for instance, MARS and tree-growing methods). We compare them with symbolic regression, which is a different approach based on genetic algorithms. Finally, a novel approach is proposed for combining a symbolic regression model, which is shown to be easily interpretable, with a Gaussian Process. The combined model has an improved accuracy and provides error bounds in the sense that the deviation from the verified symbolic model is always kept below a defined limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems, vol. 15, pp. 561–568. MIT Press, Cambridge (2003)

    Google Scholar 

  2. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont (1984)

    MATH  Google Scholar 

  5. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Friedman, J.H.: Multivariate Adaptive Regression Splines. The Annals of Statistics 19(1), 1–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Springer, New York (2009), http://www-stat.stanford.edu/~tibs/ElemStatLearn

  8. Lang, B.: Monotonic Multi-layer Perceptron Networks as Universal Approximators. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 31–37. Springer, Heidelberg (2005), doi:10.1007/11550907

    Google Scholar 

  9. Lisboa, P.J.G.: Industrial use of safety-related artificial neural networks. Contract research report 327/2001. Liverpool John Moores University (2001)

    Google Scholar 

  10. Loh, W.: Regression by parts: Fitting visually interpretable models with guide. In: Chen, C., Härdle, W., Unwin, A. (eds.) Handbook of Computational Statistics, pp. 447–468 (2008)

    Google Scholar 

  11. Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Transact. Neural Networks, 748–768 (2000)

    Google Scholar 

  12. Nusser, S., Otte, C., Hauptmann, W.: Interpretable ensembles of local models for safety-related applications. In: Proceedings of 16th European Symposium on Artificial Neural Networks (ESANN 2008), Brugge, Belgium, pp. 301–306 (2008)

    Google Scholar 

  13. Nusser, S., Otte, C., Hauptmann, W., Kruse, R.: Learning verifiable ensembles for classification problems with high safety requirements. In: Wang, L.S.L., Hong, T.P. (eds.) Intelligent Soft Computation and Evolving Data Mining: Integrating Advanced Technology, pp. 405–431. IGI Global (2009)

    Google Scholar 

  14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  15. Schmidt, M., Lipson, H.: Distilling Free-Form Natural Laws from Experimental Data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  16. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  17. Silverman, B.: Density Estimation for Statistics and Data Analysis (Chapman & Hall/CRC Monographs on Statistics & Applied Probability). Chapman and Hall/CRC (1986)

    Google Scholar 

  18. Taylor, B.J. (ed.): Methods and Procedures for the Verification and Validation of Artificial Neural Networks. Springer (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Otte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Otte, C. (2013). Safe and Interpretable Machine Learning: A Methodological Review. In: Moewes, C., Nürnberger, A. (eds) Computational Intelligence in Intelligent Data Analysis. Studies in Computational Intelligence, vol 445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32378-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32378-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32377-5

  • Online ISBN: 978-3-642-32378-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics