Abstract
In this chapter we review a number of real-world applications where symbolic regression was used recently and with great success. Industrial scale symbolic regression armed with the power to select right variables and variable combinations, build robust trustable predictions and guide experimentation has undoubtedly earned its place in industrial process optimization, business forecasting, product design and now complex systems modeling and policy making.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Attack rate is defined as a ratio of the new cases in the population at risk to the total size of the population at risk.
References
Andradóttir S, Chiu W, Goldsman D, Lee M, Tsui K, Sander B, Fisman D, Nizam A (2011) Reactive strategies for containing developing outbreaks of pandemic influenza. BMC Public Health 11(Suppl 1):S1
Chao D, Halloran M, Obenchain V, Longini I (2010) FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput Biol 6(1):e1000,656
Crombecq K (2011) Surrogate modelling of computer experiments with sequential experimental design. Ph.D. thesis, University of Antwerp, Antwerp
Crombecq K, Dhaene T (2010) Generating sequential space-filling designs using genetic algorithms and monte carlo methods. In: Simulated evolution and learning. Lecture notes in computer science, vol 6457. Springer, Berlin, pp 80–84
Crombecq K, De Tommasi L, Gorissen D, Dhaene T (2009) A novel sequential design strategy for global surrogate modeling. In: Winter simulation conference, Austin, Texas, WSC ’09, pp 731–742
Evolved Analytics LLC (2011) DataModeler Release 8.0 Documentation. Evolved Analytics LLC - www.evolved-analytics.com
Ferguson N, Cummings D, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke D (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056):209–214
Ferguson N, Cummings D, Fraser C, Cajka J, Cooley P, Burke D (2006) Strategies for mitigating an influenza pandemic. Nature 442(7101):448–452
Germann T, Kadau K, Longini Jr I, Macken C (2006) Mitigation strategies for pandemic influenza in the United States. PNAS 103(15):5935–5940
Halloran M, Ferguson N, Eubank S, Longini I, Cummings D, Lewis B, Xu S, Fraser C, Vullikanti A, Germann T, et al (2008) Modeling targeted layered containment of an influenza pandemic in the United States. PNAS 105(12):4639–4644
Husslage B, Rennen G, Van Dam ER, Den Hertog D (2006) Space-filling Latin hypercube designs for computer experiments. Tilburg University
Kordon AK, Smits GF (2001) Soft sensor development using genetic programming. In: Spector L, Goodman ED, Wu A, Langdon WB, Voigt HM, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the genetic and evolutionary computation conference (GECCO-2001), Morgan Kaufmann, San Francisco, California, pp 1346–1351. http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d24.pdf
Kordon AK (2012) Applying intelligent systems in industry: a realistic overview. In proceedings of the 6th IEEE international conference intelligent systems. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6335108
Kordon AK (2014) Applying genetic programming in business forecasting. Genetic programming theory and practice XI. http://link.springer.com/chapter/10.1007/978-1-4939-0375-7_6
Ma J, Ackerman E, Yang J (1993) Parameter sensitivity of a model or viral epidemics simulated with Monte Carlo techniques. I. illness attack rates. Int J Biomed Comput 32:237–253
Piedra P, Gaglani M, Kozinetz C, Herschler G, Riggs M, Griffith M, Fewlass C, Watts M, Hessel C, Cordova J, et al (2005) Herd immunity in adults against influenza-related illnesses with use of the trivalent-live attenuated influenza vaccine (CAIV-T) in children. Vaccine 23(13):1540–1548
Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer, New York
Smits G, Kotanchek M (2004) Pareto-front exploitation in symbolic regression, Chap. 17 In: O’Reilly UM, Yu T, Riolo RL, Worzel B (eds) Genetic programming theory and practice II. Springer, Ann Arbor, pp 283–299. doi:10.1007/0-387-23254-0_17
Smits G, Vladislavleva E (2008) Trustable symbolic regression models: using ensembles interval arithmetic and pareto fronts to develop robust and trust aware models. In: Dow Benelux BV, Terneuzen (eds) Tilburg University, Tilburg, the Netherlands. Evolved-Analytics, LLC, Midland, MI, USA http://link.springer.com/chapter/10.1007{%}2F978-0-387-76308-8_12
Stijven S, Minnebo W, Vladislavleva K (2011) Separating the wheat from the chaff: on feature selection and feature importance in regression random forests and symbolic regression. In: Proceedings of the 13th annual conference companion on genetic and evolutionary computation, Dublin, GECCO ’11, pp 623–630
Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models
Vladislavleva E, Smits G, Kotanchek M (2008) Better solutions faster: soft evolution of robust regression models in pareto genetic programming. In: Dow Benelux BV, Terneuzen (eds) Tilburg University, Tilburg, the Netherlands. Evolved-Analytics, LLC, Midland, MI, USA http://link.springer.com/chapter/10.1007%2F978-0-387-76308-8_2
Willem L, Stijven S, Vladislavleva E, Broeckhove J, Beutels P, Hens N (2014) Active learning to understand infectious disease models and improve policy making. PLoS Comput Biol 10(4). doi:10.1371/journal.pcbi.1003563. http://dx.doi.org/10.1371/journal.pcbi.1003563
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Stijven, S., Vladislavleva, E., Kordon, A., Willem, L., Kotanchek, M.E. (2016). Prime-Time: Symbolic Regression Takes Its Place in the Real World. In: Riolo, R., Worzel, W., Kotanchek, M., Kordon, A. (eds) Genetic Programming Theory and Practice XIII. Genetic and Evolutionary Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-34223-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-34223-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-34221-4
Online ISBN: 978-3-319-34223-8
eBook Packages: Computer ScienceComputer Science (R0)