Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Same Upper Bound for Both: The 2-Page and the Rectilinear Crossing Numbers of the n-Cube

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8165))

Included in the following conference series:

  • 920 Accesses

Abstract

We present two main results: a 2-page drawing and a rectilinear drawing of the n-dimensional cube Q n . Both drawings have the same number \(\frac{125}{768}4^n-\frac{2^{n-3}}{3}\left(3n^2+\frac{9+(-1)^{n+1}}{2}\right)\) of crossings, even though they are given by different constructions. The first improves the current best general 2-page drawing, while the second is the first non-trivial rectilinear drawing of Q n .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ábrego, B., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.: The 2-page crossing number of K n . In: Proc. 2012 Symposium on Computational Geometry, SoCG 2012, pp. 397–404. ACM (2012)

    Google Scholar 

  2. Balogh, J., Salazar, G.: k-sets, convex quadrilaterals, and the rectilinear crossing number of K n . Discrete Comput. Geom. 35(4), 671–690 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buchheim, C., Zheng, L.: Fixed linear crossing minimization by reduction to the maximum cut problem. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 507–516. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: A layout problem with applications to VLSI design. SIAM J. Algebraic Discrete Methods 8, 33–58 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dean, A.M., Richter, R.B.: The crossing number of C 4 ×C 4. J. Graph Theory 19, 125–129 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Klerk, E., Pasechnik, D.: Improved lower bounds for the 2-page crossing numbers of K m,n and K n via semidefinite programming. SIAM J. Optim. 22(2), 581–595 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erdős, P., Guy, R.K.: Crossing number problems. Amer. Math. Monthly 80, 52–58 (1973)

    Article  MathSciNet  Google Scholar 

  8. Faria, L., de Figueiredo, C.M.H., Sýkora, O., Vro, I.: An improved upper bound on the crossing number of the hypercube. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 230–236. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Faria, L., de Figueiredo, C.M.H., Sýkora, O., Vrto, I.: An improved upper bound on the crossing number of the n-cube. J. Graph Theory 59, 145–161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic and Discrete Methods 4, 312–316 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Madej, T.: Bounds for the crossing number of the n-cube. J. Graph Theory 15, 81–97 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization in linear embeddings of graphs. IEEE Trans. Comput. 39(1), 124–127 (1990)

    Article  MathSciNet  Google Scholar 

  13. Yannakakis, M.: Embedding planar graphs in four pages. In: 18th Annual ACM Symposium on Theory of Computing, Berkeley, CA (1986), J. Comput. System Sci. 38(1), 36–67 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faria, L., de Figueiredo, C.M.H., Richter, R.B., vrt’o, I. (2013). The Same Upper Bound for Both: The 2-Page and the Rectilinear Crossing Numbers of the n-Cube. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 2013. Lecture Notes in Computer Science, vol 8165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45043-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45043-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45042-6

  • Online ISBN: 978-3-642-45043-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics