Nothing Special   »   [go: up one dir, main page]

Skip to main content

Flip Distance between Triangulations of a Simple Polygon is NP-Complete

  • Conference paper
Algorithms – ESA 2013 (ESA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8125))

Included in the following conference series:

Abstract

Let T be a triangulation of a simple polygon. A flip in T is the operation of removing one diagonal of T and adding a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study.

We show that computing the flip distance between two triangulations of a simple polygon is NP-complete. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.

O.A. partially supported by the ESF EUROCORES programme EuroGIGA - ComPoSe, Austrian Science Fund (FWF): I 648-N18. W.M. supported in part by DFG project MU/3501/1. A.P. is recipient of a DOC-fellowship of the Austrian Academy of Sciences at the Institute for Software Technology, Graz University of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abel, Z., Ballinger, B., Bose, P., Collette, S., Dujmović, V., Hurtado, F., Kominers, S., Langerman, S., Pór, A., Wood, D.: Every large point set contains many collinear points or an empty pentagon. Graphs Combin. 27, 47–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichholzer, O., Mulzer, W., Pilz, A.: Flip Distance Between Triangulations of a Simple Polygon is NP-Complete. ArXiv e-prints (2012) arXiv:1209.0579 [cs.CG]

    Google Scholar 

  3. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Culik II, K., Wood, D.: A note on some tree similarity measures. Inf. Process. Lett. 15(1), 39–42 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eppstein, D.: Happy endings for flip graphs. JoCG 1(1), 3–28 (2010)

    MathSciNet  Google Scholar 

  6. Hanke, S., Ottmann, T., Schuierer, S.: The edge-flipping distance of triangulations. J. UCS 2(8), 570–579 (1996)

    MathSciNet  Google Scholar 

  7. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22, 333–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics (1992)

    Google Scholar 

  9. Lawson, C.L.: Transforming triangulations. Discrete Math. 3(4), 365–372 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lawson, C.L.: Software for C 1 surface interpolation. In: Rice, J.R. (ed.) Mathematical Software III, pp. 161–194. Academic Press, NY (1977)

    Google Scholar 

  11. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point-set is NP-complete. In: Proc. 24th CCCG, pp. 127–132 (2012)

    Google Scholar 

  12. Pilz, A.: Flip distance between triangulations of a planar point set is APX-hard. ArXiv e-prints (2012) arXiv:1206.3179 [cs.CG]

    Google Scholar 

  13. Rao, S.K., Sadayappan, P., Hwang, F.K., Shor, P.W.: The rectilinear Steiner arborescence problem. Algorithmica 7, 277–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shi, W., Su, C.: The rectilinear Steiner arborescence problem is NP-complete. In: Proc. 11th SODA, pp. 780–787 (2000)

    Google Scholar 

  15. Sleator, D., Tarjan, R., Thurston, W.: Rotation distance, triangulations and hyperbolic geometry. J. Amer. Math. Soc. 1, 647–682 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Trubin, V.: Subclass of the Steiner problems on a plane with rectilinear metric. Cybernetics 21, 320–324 (1985)

    Article  MATH  Google Scholar 

  17. Urrutia, J.: Algunos problemas abiertos. In: Proc. IX Encuentros de Geometría Computacional, pp. 13–24 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aichholzer, O., Mulzer, W., Pilz, A. (2013). Flip Distance between Triangulations of a Simple Polygon is NP-Complete. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics