Abstract
This paper gives an introduction to isogeometric methods from a mathematical point of view, with special focus on some theoretical results that are part of the mathematical foundation of the method. The aim of this work is to serve as a complement to other existing references in the field, that are more engineering oriented, and to provide a reference that can be used for didactic purposes. We analyse variational techniques for the numerical resolutions of PDEs using isogeometric methods, that is, based on splines or NURBS, and we provide optimal approximation and error estimates for scalar elliptic problems. The theoretical results are demonstrated by some numerical examples. We also present the definition of structure-preserving discretizations with splines, a generalization of edge and face finite elements, also with approximation estimates and some numerical tests for time harmonic Maxwell equations in a cavity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Non-Uniform refers to the distance between the knots.
References
Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic, New York/London (1975)
Apostolatos, A., Schmidt, R., Wüchner, R., Bletzinger, K.U.: A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. Int. J. Numer. Methods Eng. 97 (7), 473–504 (2014)
Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)
Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. (N.S.) 47 (2), 281–354 (2010)
Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. The Clarendon Press/Oxford University Press, New York (2001)
Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16 (7), 1031–1090 (2006)
Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for h-p-k-refinement in isogeometric analysis. Numer. Math. 118 (2), 271–305 (2011)
Beirão da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R.: Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287 (2014)
Beirão da Veiga, L., Cho, D., Sangalli, G.: Anisotropic NURBS approximation in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 209–212, 1–11 (2012)
Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)
Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36 (4), 1264–1290 (electronic) (1999)
de Boor, C.: A Practical Guide to Splines. Applied Mathematical Sciences, vol. 27, revised edn. Springer, New York (2001)
Borden, M.J., Scott, M.A., Evans, J.A., Hughes, T.J.R.: Isogeometric finite element data structures based on Bézier extraction of NURBS. Int. J. Numer. Methods Eng. 87 (1–5), 15–47 (2011)
Buffa, A., Cho, D., Kumar, M.: Characterization of T-splines with reduced continuity order on T-meshes. Comput. Methods Appl. Mech. Eng. 201–204, 112–126 (2012)
Buffa, A., Rivas, J., Sangalli, G., Vázquez, R.: Isogeometric discrete differential forms in three dimensions. SIAM J. Numer. Anal. 49 (2), 818–844 (2011)
Buffa, A., Sangalli, G., Vázquez, R.: Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations. J. Comput. Phys. 257, Part B, 1291–1320 (2014)
Buffa, A., Vázquez, R., Sangalli, G., Beirão da Veiga, L.: Approximation estimates for isogeometric spaces in multipatch geometries. Numer. Methods Partial Differ. Equ. 31 (2), 422–438 (2015)
Cohen, E., Riesenfeld, R., Elber, G.: Geometric Modeling with Splines: An Introduction. AK Peters, Wellesley (2001)
Collier, N., Dalcin, L., Pardo, D., Calo, V.M.: The cost of continuity: performance of iterative solvers on isogeometric finite elements. SIAM J. Sci. Comput. 35 (2), A767–A784 (2013)
Cottrell, J.A., Hughes, T., Reali, A.: Studies of refinement and continuity in isogeometric structural analysis. Comput. Methods Appl. Mech. Eng. 196, 4160–4183 (2007)
Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester/Hoboken (2009)
Dalcin, L., Collier, N., Vignal, P., Cortes, A., Calo, V.: PetIGA: a framework for high-performance isogeometric analysis (2015). arXiv:1305.4452v3 [cs.MS]
Dauge, M.: Benchmark computations for Maxwell equations for the approximation of highly singular solutions. http://perso.univ-rennes1.fr/monique.dauge/benchmax.html (2014)
Dörfel, M., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local h-refinement with T-splines. Comput. Methods Appl. Mech. Eng. 199 (5–8), 264–275 (2010)
de Falco, C., Reali, A., Vázquez, R.: GeoPDEs: a research tool for isogeometric analysis of PDEs. Adv. Eng. Softw. 42 (12), 1020–1034 (2011)
Govindjee, S., Strain, J., Mitchell, T.J., Taylor, R.L.: Convergence of an efficient local least-squares fitting method for bases with compact support. Comput. Methods Appl. Mech. Eng. 213–216, 84–92 (2012)
Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)
Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194 (39–41), 4135–4195 (2005)
Hughes, T.J.R., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput. Methods Appl. Mech. Eng. 197 (49–50), 4104–4124 (2008)
Kellogg, R.B.: On the Poisson equation with intersecting interfaces. Appl. Anal. 4 (2), 101–129 (1974/75)
Kiendl, J., Bazilevs, Y., Hsu, M.C., Wüchner, R., Bletzinger, K.U.: The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199 (37–40), 2403–2416 (2010)
Kleiss, S.K., Pechstein, C., Jüttler, B., Tomar, S.: IETI-isogeometric tearing and interconnecting. Comput. Methods Appl. Mech. Eng. 247–248, 201–215 (2012)
Lee, B.G., Lyche, T., Mørken, K.: Some examples of quasi-interpolants constructed from local spline projectors. In: Mathematical Methods for Curves and Surfaces, Oslo, 2000. Innovations in Applied Mathematics, pp. 243–252. Vanderbilt University Press, Nashville (2001)
Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)
Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44 (4), 631–658 (2002/2003)
Nédélec, J.C.: Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35, 315–341 (1980)
Nguyen, V.P., Bordas, S.P.A., Rabczuk, T.: Isogeometric analysis: an overview and computer implementation aspects (2013). arXiv:1205.2129v2 [cs.NA]
Nguyen, V.P., Kerfriden, P., Brino, M., Bordas, S.P.A., Bonisoli, E.: Nitsche’s method for two and three dimensional NURBS patch coupling. Comput. Mech. 53 (6), 1163–1182 (2014)
Pauletti, M.S., Martinelli, M., Cavallini, N., Antolín, P.: Igatools: an isogeometric analysis library. SIAM J. Sci. Comput. 37 (4), C465–C496 (2015)
Petzoldt, M.: Regularity and error estimators for elliptic problems with discontinuous coefficients. Ph.D. thesis, Freie Universität Berlin (2001)
Piegl, L., Tiller, W.: The Nurbs Book. Springer, New York (1997)
Ratnani, A., Sonnendrücker, E.: An arbitrary high-order spline finite element solver for the time domain Maxwell equations. J. Sci. Comput. 51, 87–106 (2012)
Rogers, D.F.: An Introduction to NURBS: With Historical Perspective. Morgan Kaufmann Publishers Inc., San Francisco (2001)
Ruess, M., Schillinger, D., Özcan, A.I., Rank, E.: Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput. Methods Appl. Mech. Eng. 269, 46–71 (2014)
Sabin, M.A.: Spline finite elements. Ph.D. thesis, Cambridge University (1997)
Schumaker, L.L.: Spline Functions: Basic Theory. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge (2007)
Scott, M.: T-splines as a design-through-analysis technology. Ph.D. thesis, The University of Texas at Austin (2011)
Speleers, H., Manni, C., Pelosi, F., Sampoli, M.L.: Isogeometric analysis with Powell-Sabin splines for advection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 221–222, 132–148 (2012)
Takacs, T., Jüttler, B.: Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200 (49–52), 3568–3582 (2011)
Takacs, T., Jüttler, B.: Regularity properties of singular parameterizations in isogeometric analysis. Graph. Models 74 (6), 361–372 (2012)
Thomas, D., Scott, M., Evans, J., Tew, K., Evans, E.: Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Comput. Methods Appl. Mech. Eng. 284, 55–105 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
da Veiga, L.B., Buffa, A., Sangalli, G., Vázquez, R. (2016). An Introduction to the Numerical Analysis of Isogeometric Methods. In: Higueras, I., Roldán, T., Torrens, J. (eds) Numerical Simulation in Physics and Engineering. SEMA SIMAI Springer Series, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-32146-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-32146-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32145-5
Online ISBN: 978-3-319-32146-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)