Abstract
This chapter studies the effect of the quadrature on the isogeometric analysis of the wave propagation and structural vibration problems. The dispersion error of the isogeometric elements is minimized by optimally blending two standard Gauss-type quadrature rules. These blending rules approximate the inner products and increase the convergence rate by two extra orders when compared to those with fully-integrated inner products. To quantify the approximation errors, we generalize the Pythagorean eigenvalue error theorem of Strang and Fix. To reduce the computational cost, we further propose a two-point rule for C 1 quadratic isogeometric elements which produces equivalent inner products on uniform meshes and yet requires fewer quadrature points than the optimally-blended rules.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ainsworth, M.: Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42(2), 553–575 (2004)
Ainsworth, M., Wajid, H.A.: Dispersive and dissipative behavior of the spectral element method. SIAM J. Numer. Anal. 47(5), 3910–3937 (2009)
Ainsworth, M., Wajid, H.A.: Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM J. Numer. Anal. 48(1), 346–371 (2010)
Akkerman, I., Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Hulshoff, S.: The role of continuity in residual-based variational multiscale modeling of turbulence. Comput. Mech. 41(3), 371–378 (2008)
Antolin, P., Buffa, A., Calabro, F., Martinelli, M., Sangalli, G.: Efficient matrix computation for tensor-product isogeometric analysis: the use of sum factorization. Comput. Methods Appl. Mech. Eng. 285, 817–828 (2015)
Auricchio, F., Calabro, F., Hughes, T.J.R., Reali, A., Sangalli, G.: A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 249, 15–27 (2012)
Babuska, I.M., Sauter, S.A.: Is the pollution effect of the fem avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)
Banerjee, U.: A note on the effect of numerical quadrature in finite element eigenvalue approximation. Numer. Math. 61(1), 145–152 (1992)
Banerjee, U., Osborn, J.E.: Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56(8), 735–762 (1989)
Banerjee, U., Suri, M.: Analysis of numerical integration in p-version finite element eigenvalue approximation. Numer. Methods Partial Differ. Equ. 8(4), 381–394 (1992)
Bartoň, M., Calo, V.M.: Gaussian quadrature for splines via homotopy continuation: rules for C2 cubic splines. J. Comput. Appl. Math. 296, 709–723 (2016)
Bartoň, M., Calo, V.M.: Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 305, 217–240 (2016)
Bazilevs, Y., Calo, V.M., Cottrell, J., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197(1), 173–201 (2007)
Calabrò, F., Sangalli, G., Tani, M.: Fast formation of isogeometric Galerkin matrices by weighted quadrature. Comput. Methods Appl. Mech. Eng. 316, 606–622 (2017)
Calo, V.M., Deng, Q., Puzyrev, V.: Dispersion optimized quadratures for isogeometric analysis. arXiv:1702.04540 (2017, preprint)
Collier, N., Pardo, D., Dalcin, L., Paszynski, M., Calo, V.M.: The cost of continuity: a study of the performance of isogeometric finite elements using direct solvers. Comput. Methods Appl. Mech. Eng. 213, 353–361 (2012)
Collier, N., Dalcin, L., Pardo, D., Calo, V.M.: The cost of continuity: performance of iterative solvers on isogeometric finite elements. SIAM J. Sci. Comput. 35(2), A767–A784 (2013)
Collier, N., Dalcin, L., Calo, V.M.: On the computational efficiency of isogeometric methods for smooth elliptic problems using direct solvers. Int. J. Numer. Methods Eng. 100(8), 620–632 (2014)
Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195(41), 5257–5296 (2006)
Cottrell, J., Hughes, T.J.R., Reali, A.: Studies of refinement and continuity in isogeometric structural analysis. Comput. Methods Appl. Mech. Eng. 196(41), 4160–4183 (2007)
Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)
De Basabe, J.D., Sen, M.K.: Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72(6), T81–T95 (2007)
De Basabe, J.D., Sen, M.K.: Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping. Geophys. J. Int. 181(1), 577–590 (2010)
Dedè, L., Jäggli, C., Quarteroni, A.: Isogeometric numerical dispersion analysis for two-dimensional elastic wave propagation. Comput. Methods Appl. Mech. Eng. 284, 320–348 (2015)
Deng, Q., Bartoň, M., Puzyrev, V., Calo, V.M.: Dispersion-minimizing optimal quadrature rules for c 1 quadratic isogeometric analysis. Comput. Methods Appl. Mech. Eng. 328, 554–564 (2018)
Elguedj, T., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: B-bar and F-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Comput. Methods Appl. Mech. Eng. 197(33), 2732–2762 (2008)
Esterhazy, S., Melenk, J.: An analysis of discretizations of the Helmholtz equation in L 2 and in negative norms. Comput. Math. Appl. 67(4), 830–853 (2014). https://doi.org/10.1016/j.camwa.2013.10.005
Ewing, R., Heinemann, R., et al.: Incorporation of mixed finite element methods in compositional simulation for reduction of numerical dispersion. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (1983)
Fix, G.J.: Effect of quadrature errors in finite element approximation of steady state, eigenvalue and parabolic problems. In: Aziz, A.K. (ed.) The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, pp. 525–556 (1972)
Gao, L., Calo, V.M.: Fast isogeometric solvers for explicit dynamics. Comput. Methods Appl. Mech. Eng. 274, 19–41 (2014)
Garcia, D., Pardo, D., Dalcin, L., Paszyski, M., Collier, N., Calo, V.M.: The value of continuity: refined isogeometric analysis and fast direct solvers. Comput. Methods Appl. Mech. Eng. 316, 586–605 (2016)
Garcia, D., Bartoň, M., Pardo, D.: Optimally refined isogeometric analysis. Proc. Comput. Sci. 108, 808–817 (2017)
Gómez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(49), 4333–4352 (2008)
Gomez, H., Hughes, T.J.R., Nogueira, X., Calo, V.M.: Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations. Comput. Methods Appl. Mech. Eng. 199(25), 1828–1840 (2010)
Guddati, M.N., Yue, B.: Modified integration rules for reducing dispersion error in finite element methods. Comput. Methods Appl. Mech. Eng. 193(3), 275–287 (2004)
Harari, I.: Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics. Comput. Methods Appl. Mech. Eng. 140(1–2), 39–58 (1997)
Harari, I., Slavutin, M., Turkel, E.: Analytical and numerical studies of a finite element PML for the Helmholtz equation. J. Comput Acoust. 8(1), 121–137 (2000)
He, Z., Cheng, A., Zhang, G., Zhong, Z., Liu, G.: Dispersion error reduction for acoustic problems using the edge-based smoothed finite element method (ES-FEM). Int. J. Numer. Methods Eng. 86(11), 1322–1338 (2011)
Hiemstra, R.R., Calabrò, F., Schillinger, D., Hughes, T.J.R.: Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316, 966–1004 (2016)
Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)
Hughes, T.J.R., Reali, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput. Methods Appl. Mech. Eng. 197(49), 4104–4124 (2008)
Hughes, T.J.R., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199(5), 301–313 (2010)
Hughes, T.J.R., Evans, J.A., Reali, A.: Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech. Eng. 272, 290–320 (2014)
Ihlenburg, F., Babuška, I.: Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int. J. Numer. Methods Eng. 38(22), 3745–3774 (1995)
Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999)
Komatitsch, D., Vilotte, J.P.: The spectral element method: an efficient tool to simulate the seismic response of 2d and 3d geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)
Lipton, S., Evans, J.A., Bazilevs, Y., Elguedj, T., Hughes, T.J.R.: Robustness of isogeometric structural discretizations under severe mesh distortion. Comput. Methods Appl. Mech. Eng. 199(5), 357–373 (2010)
Liu, J., Dedè, L., Evans, J.A., Borden, M.J., Hughes, T.J.R.: Isogeometric analysis of the advective Cahn–Hilliard equation: spinodal decomposition under shear flow. J. Comput. Phys. 242, 321–350 (2013)
Marfurt, K.J.: Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics 49(5), 533–549 (1984)
Motlagh, Y.G., Ahn, H.T., Hughes, T.J.R., Calo, V.M.: Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method. Comput. Fluids 71, 146–155 (2013)
Nguyen, L.H., Schillinger, D.: A collocated isogeometric finite element method based on Gauss–Lobatto Lagrange extraction of splines. Comput. Methods Appl. Mech. Eng. 316, 720–740 (2016)
Pardo, D., Paszynski, M., Collier, N., Alvarez, J., Dalcin, L., Calo, V.M.: A survey on direct solvers for Galerkin methods. SeMA J. 57(1), 107–134 (2012)
Piegl, L., Tiller, W.: The NURBS Book. Springer, New York (1997)
Puzyrev, V., Deng, Q., Calo, V.M.: Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes. Comput. Methods Appl. Mech. Eng. 320, 421–443 (2017). http://dx.doi.org/10.1016/j.cma.2017.03.029. http://www.sciencedirect.com/science/article/pii/S004578251631920X
Reali, A.: An isogeometric analysis approach for the study of structural vibrations. Master’s Thesis, University of Pavia (2004)
Seriani, G., Oliveira, S.P.: Optimal blended spectral-element operators for acoustic wave modeling. Geophysics 72(5), SM95–SM106 (2007)
Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, vol. 12. Springer, New York (2013)
Strang, G., Fix, G.J.: An Analysis of the Finite Element Method, vol. 212. Prentice-Hall, Englewood Cliffs (1973)
Thompson, L.L., Pinsky, P.M.: Complex wavenumber Fourier analysis of the p-version finite element method. Comput. Mech. 13(4), 255–275 (1994)
Thompson, L.L., Pinsky, P.M.: A Galerkin least-squares finite element method for the two-dimensional Helmholtz equation. Int. J. Numer. Methods Eng. 38(3), 371–397 (1995)
Wang, D., Liu, W., Zhang, H.: Novel higher order mass matrices for isogeometric structural vibration analysis. Comput. Methods Appl. Mech. Eng. 260, 92–108 (2013)
Wang, D., Liu, W., Zhang, H.: Superconvergent isogeometric free vibration analysis of Euler–Bernoulli beams and Kirchhoff plates with new higher order mass matrices. Comput. Methods Appl. Mech. Eng. 286, 230–267 (2015)
Yue, B., Guddati, M.N.: Dispersion-reducing finite elements for transient acoustics. J. Acoust. Soc. Am. 118(4), 2132–2141 (2005)
Acknowledgements
This publication was made possible in part by the CSIRO Professorial Chair in Computational Geoscience at Curtin University and the Deep Earth Imaging Enterprise Future Science Platforms of the Commonwealth Scientific Industrial Research Organisation, CSIRO, of Australia. Additional support was provided by the National Priorities Research Program grant 7-1482-1-278 from the Qatar National Research Fund (a member of The Qatar Foundation), by the European Union’s Horizon 2020 Research and Innovation Program of the Marie Skłodowska-Curie grant agreement No. 644202, and by the Projects of the Spanish Ministry of Economy and Competitiveness MTM2016-76329-R (AEI/FEDER, EU). The Spring 2016 Trimester on “Numerical methods for PDEs”, organized with the collaboration of the Centre Emile Borel at the Institut Henri Poincare in Paris supported VMC’s visit to IHP in October, 2016.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bartoň, M., Calo, V., Deng, Q., Puzyrev, V. (2018). Generalization of the Pythagorean Eigenvalue Error Theorem and Its Application to Isogeometric Analysis. In: Di Pietro, D., Ern, A., Formaggia, L. (eds) Numerical Methods for PDEs. SEMA SIMAI Springer Series, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-94676-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-94676-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94675-7
Online ISBN: 978-3-319-94676-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)