Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stochastic Analysis of Chemical Reaction Networks Using Linear Noise Approximation

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9308))

Included in the following conference series:

Abstract

Stochastic evolution of Chemical Reactions Networks (CRNs) over time is usually analysed through solving the Chemical Master Equation (CME) or performing extensive simulations. Analysing stochasticity is often needed, particularly when some molecules occur in low numbers. Unfortunately, both approaches become infeasible if the system is complex and/or it cannot be ensured that initial populations are small. We develop a probabilistic logic for CRNs that enables stochastic analysis of the evolution of populations of molecular species. We present an approximate model checking algorithm based on the Linear Noise Approximation (LNA) of the CME, whose computational complexity is independent of the population size of each species and polynomial in the number of different species. The algorithm requires the solution of first order polynomial differential equations. We prove that our approach is valid for any CRN close enough to the thermodynamical limit. However, we show on three case studies that it can still provide good approximation even for low molecule counts. Our approach enables rigorous analysis of CRNs that are not analyzable by solving the CME, but are far from the deterministic limit. Moreover, it can be used for a fast approximate stochastic characterization of a CRN.

This research is supported by a Royal Society Research Professorship and ERC AdG VERIWARE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bortolussi, L., Lanciani, R.: Model checking Markov population models by central limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23(02), 247–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(1), 84 (2014)

    Article  Google Scholar 

  4. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. arXiv preprint (2015). arXiv:1506.07861

  5. Csikász-Nagy, A., Cardelli, L., Soyer, O.S.: Response dynamics of phosphorelays suggest their potential utility in cell signalling. J. R. Soc. Interface 8(57), 480–488 (2011)

    Article  Google Scholar 

  6. Elf, J., Ehrenberg, M.: Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res. 13(11), 2475–2484 (2003)

    Article  Google Scholar 

  7. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence, vol. 282. Wiley, New York (2009)

    Google Scholar 

  8. Gillespie, D.T.: Deterministic limit of stochastic chemical kinetics. J. Phys. Chem. B 113(6), 1640–1644 (2009)

    Article  Google Scholar 

  9. Gillespie, D.T., Hellander, A., Petzold, L.R.: Perspective: stochastic algorithms for chemical kinetics. J. Chem. Phys. 138(17), 170901 (2013)

    Article  Google Scholar 

  10. Itō, I.: Essentials of Stochastic Processes, vol. 231. American Mathematical Soc., Providence (2006)

    MATH  Google Scholar 

  11. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Patel, J.K., Read, C.B.: Handbook of the Normal Distribution, vol. 150. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  14. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992)

    Google Scholar 

  15. Wallace, E., Gillespie, D., Sanft, K., Petzold, L.: Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. IET Syst. Biol. 6(4), 102–115 (2012)

    Article  Google Scholar 

  16. Wolf, V., Goel, R., Mateescu, M., Henzinger, T.A.: Solving the chemical master equation using sliding windows. BMC Syst. Biol. 4(1), 42 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Laurenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cardelli, L., Kwiatkowska, M., Laurenti, L. (2015). Stochastic Analysis of Chemical Reaction Networks Using Linear Noise Approximation. In: Roux, O., Bourdon, J. (eds) Computational Methods in Systems Biology. CMSB 2015. Lecture Notes in Computer Science(), vol 9308. Springer, Cham. https://doi.org/10.1007/978-3-319-23401-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23401-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23400-7

  • Online ISBN: 978-3-319-23401-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics