Abstract
In this paper we investigate the use of Central Limit Approximation of Continuous Time Markov Chains to verify collective properties of large population models, describing the interaction of many similar individual agents. More precisely, we specify properties in terms of individual agents by means of deterministic timed automata with a single global clock (which cannot be reset), and then use the Central Limit Approximation to estimate the probability that a given fraction of agents satisfies the local specification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis. Springer (2000)
Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking markov chains with actions and state labels. IEEE Trans. Software Eng. 33(4), 209–224 (2007)
Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model checking continuous-time Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000)
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)
Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective systems behaviour: A tutorial. Perf. Eval (2013)
Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming: To ordinary differential equations and back. Trans. Comp. Sys. Bio. XI (2009)
Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Model checking of continuous-time Markov chains against timed automata specifications. Logical Methods in Computer Science 7(1) (2011)
Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with csl{ TA}. IEEE Trans. Software Eng. 35(2), 224–240 (2009)
Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley (2005)
Hayden, R.A., Bradley, J.T., Clark, A.: Performance specification and evaluation with unified stochastic probes and fluid analysis. IEEE Trans. Software Eng. 39(1), 97–118 (2013)
Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time distributions in large Markov models. Theor. Comput. Sci. 413(1), 106–141 (2012)
Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. Theor. Comput. Sci (2007)
Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)
Kolesnichenko, A., Remke, A., de Boer, P.-T., Haverkort, B.R.: Comparison of the mean-field approach and simulation in a peer-to-peer botnet case study. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 133–147. Springer, Heidelberg (2011)
Kolesnichenko, A., Remke, A., de Boer, P.T., Haverkort, B.R.: A logic for model-checking of mean-field models. In: Proc. of DSN (2013)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press (2006)
Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Trans. Software Eng. 38(1), 205–219 (2012)
Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bortolussi, L., Lanciani, R. (2013). Model Checking Markov Population Models by Central Limit Approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds) Quantitative Evaluation of Systems. QEST 2013. Lecture Notes in Computer Science, vol 8054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40196-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-40196-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40195-4
Online ISBN: 978-3-642-40196-1
eBook Packages: Computer ScienceComputer Science (R0)