Abstract
Hyper-heuristic frameworks, although intended to be cross-domain at the highest level, rely on a set of domain-specific low-level heuristics at lower levels. For some domains, there is a lack of available heuristics, while for novel problems, no heuristics might exist. We address this issue by introducing a novel method, applicable in multiple domains, that constructs new low-level heuristics for a domain. The method uses grammatical evolution to construct iterated local search heuristics: it can be considered cross-domain in that the same grammar can evolve heuristics in multiple domains without requiring any modification, assuming that solutions are represented in the same form. We evaluate the method using benchmarks from the travelling-salesman (TSP) and multi-dimensional knapsack (MKP) domain. Comparison to existing methods demonstrates that the approach generates low-level heuristics that outperform heuristic methods for TSP and are competitive for MKP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Using the R package TSPLIB.
- 3.
We do not provide statistical significance information as the PSO results, which are reported directly from [3], use a population based approach and vastly different number of evaluations.
References
Bader-El-Den, M., Poli, R.: Generating SAT local-search heuristics using a GP hyper-heuristic framework. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 37–49. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79305-2_4
Edmund, K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
Chih, M.: Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem. Appl. Soft Comput. 26, 378–389 (2015)
Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44629-X_11
Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill, M.: PonyGE2: grammatical evolution in python. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1194–1201. ACM (2017)
Krasnogor, N., Gustafson, S.: A study on the use of “self-generation” in memetic algorithms. Nat. Comput. 3(1), 53–76 (2004)
Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 321–334. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44973-4_36
Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Comput. Oper. Res. 51, 190–199 (2014)
Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-1_12
O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)
Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph Algorithms Appl. 13(2), 233–249 (2009)
Robu, V., Somefun, D.J.A., La Poutré, J.A.: Modeling complex multi-issue negotiations using utility graphs. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 280–287. ACM (2005)
Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Grammatical evolution hyper-heuristic for combinatorial optimization problems. Strategies 3, 4 (2012)
Sim, K., Hart, E.: A combined generative and selective hyper-heuristic for the vehicle routing problem. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 1093–1100. ACM (2016)
Stone, C., Hart, E., Paechter, B.: Automatic generation of constructive heuristics for multiple types of combinatorial optimisation problems with grammatical evolution and geometric graphs. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 578–593. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_40
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Stone, C., Hart, E., Paechter, B. (2018). On the Synthesis of Perturbative Heuristics for Multiple Combinatorial Optimisation Domains. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-99253-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99252-5
Online ISBN: 978-3-319-99253-2
eBook Packages: Computer ScienceComputer Science (R0)