Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Synthesis of Perturbative Heuristics for Multiple Combinatorial Optimisation Domains

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

  • 1864 Accesses

Abstract

Hyper-heuristic frameworks, although intended to be cross-domain at the highest level, rely on a set of domain-specific low-level heuristics at lower levels. For some domains, there is a lack of available heuristics, while for novel problems, no heuristics might exist. We address this issue by introducing a novel method, applicable in multiple domains, that constructs new low-level heuristics for a domain. The method uses grammatical evolution to construct iterated local search heuristics: it can be considered cross-domain in that the same grammar can evolve heuristics in multiple domains without requiring any modification, assuming that solutions are represented in the same form. We evaluate the method using benchmarks from the travelling-salesman (TSP) and multi-dimensional knapsack (MKP) domain. Comparison to existing methods demonstrates that the approach generates low-level heuristics that outperform heuristic methods for TSP and are competitive for MKP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/PonyGE/PonyGE2.

  2. 2.

    Using the R package TSPLIB.

  3. 3.

    We do not provide statistical significance information as the PSO results, which are reported directly from [3], use a population based approach and vastly different number of evaluations.

References

  1. Bader-El-Den, M., Poli, R.: Generating SAT local-search heuristics using a GP hyper-heuristic framework. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 37–49. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79305-2_4

    Chapter  Google Scholar 

  2. Edmund, K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  3. Chih, M.: Self-adaptive check and repair operator-based particle swarm optimization for the multidimensional knapsack problem. Appl. Soft Comput. 26, 378–389 (2015)

    Article  Google Scholar 

  4. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44629-X_11

    Chapter  Google Scholar 

  5. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill, M.: PonyGE2: grammatical evolution in python. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1194–1201. ACM (2017)

    Google Scholar 

  6. Krasnogor, N., Gustafson, S.: A study on the use of “self-generation” in memetic algorithms. Nat. Comput. 3(1), 53–76 (2004)

    Article  MathSciNet  Google Scholar 

  7. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars to parameters: automatic iterated greedy design for the permutation flow-shop problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 321–334. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44973-4_36

    Chapter  Google Scholar 

  8. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Comput. Oper. Res. 51, 190–199 (2014)

    Article  MathSciNet  Google Scholar 

  9. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-1_12

    Chapter  Google Scholar 

  10. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)

    Article  Google Scholar 

  11. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph Algorithms Appl. 13(2), 233–249 (2009)

    Article  MathSciNet  Google Scholar 

  12. Robu, V., Somefun, D.J.A., La Poutré, J.A.: Modeling complex multi-issue negotiations using utility graphs. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 280–287. ACM (2005)

    Google Scholar 

  13. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Grammatical evolution hyper-heuristic for combinatorial optimization problems. Strategies 3, 4 (2012)

    Google Scholar 

  14. Sim, K., Hart, E.: A combined generative and selective hyper-heuristic for the vehicle routing problem. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 1093–1100. ACM (2016)

    Google Scholar 

  15. Stone, C., Hart, E., Paechter, B.: Automatic generation of constructive heuristics for multiple types of combinatorial optimisation problems with grammatical evolution and geometric graphs. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 578–593. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_40

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Stone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stone, C., Hart, E., Paechter, B. (2018). On the Synthesis of Perturbative Heuristics for Multiple Combinatorial Optimisation Domains. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics