Abstract
Probabilistic model checking for systems with large or unbounded state space is a challenging computational problem in formal modelling and its applications. Numerical algorithms require an explicit representation of the state space, while statistical approaches require a large number of samples to estimate the desired properties with high confidence. Here, we show how model checking of time-bounded path properties can be recast exactly as a Bayesian inference problem. In this novel formulation the problem can be efficiently approximated using techniques from machine learning. Our approach is inspired by a recent result in statistical physics which derived closed-form differential equations for the first-passage time distribution of stochastic processes. We show on a number of non-trivial case studies that our method achieves both high accuracy and significant computational gains compared to statistical model checking.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5_75
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)
Azunre, P., Gomez-Uribe, C., Verghese, G.: Mass fluctuation kinetics: analysis and computation of equilibria and local dynamics. IET Syst. Biol. 5(6), 325–335 (2011)
Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model checking continuous-time Markov chains by transient analysis. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 358–372. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_28
Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Automated performance and dependability evaluation using model checking. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 261–289. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45798-4_12
Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)
Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W., Hendriks, M.: UPPAAL 4.0. In: Proceedings of QEST 2006, pp. 125–126. IEEE Computer Society (2006)
Bortolussi, L., Cardelli, L., Kwiatkowska, M., Laurenti, L.: Approximation of probabilistic reachability for chemical reaction networks using the linear noise approximation. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 72–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4_5
Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1_24
Bortolussi, L., Hillston, J.: Model checking single agent behaviours by fluid approximation. Inf. Comput. 242(C), 183–226 (2015)
Bortolussi, L., Lanciani, R.: Model checking Markov population models by central limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_9
Bortolussi, L., Lanciani, R.: Stochastic approximation of global reachability probabilities of Markov population models. In: Horváth, A., Wolter, K. (eds.) EPEW 2014. LNCS, vol. 8721, pp. 224–239. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10885-8_16
Bortolussi, L., Lanciani, R., Nenzi, L.: Model checking Markov population models by stochastic approximations. CoRR, abs/1711.03826 (2017)
Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous time Markov chains. Inform. Comput. 247, 235–253 (2016)
Bradley, J.T., Hayden, R.A., Clark, A.: Performance specification and evaluation with unified stochastic probes and fluid analysis. IEEE Trans. Softw. Eng. 39, 97–118 (2013)
Cseke, B., Opper, M., Sanguinetti, G.: Approximate inference in latent Gaussian-Markov models from continuous time observations. In: Proceedings of NIPS, pp. 971–979. Curran Associates Inc. (2013)
Cseke, B., Schnoerr, D., Opper, M., Sanguinetti, G.: Expectation propagation for continuous-time stochastic processes. J. Phys. A-Math. Theor. 49(49), 494002 (2016)
Durrett, R.: Essentials of Stochastic Processes. Springer, New York (2012)
Feng, C., Hillston, J., Galpin, V.: Automatic moment-closure approximation of spatially distributed collective adaptive systems. ACM Trans. Model. Comput. Simul. 26(4), 26:1–26:22 (2016)
Gardiner, C.W.: Handbook of Stochastic Methods, vol. 3. Springer, Berlin (1985)
Goodman, L.A.: Population growth of the sexes. Biometrics 9(2), 212–225 (1953)
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form. Asp. Comput. 6(5), 512–535 (1994)
Haseltine, E.L., Rawlings, J.B.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959 (2002)
Hayden, R.A., Stefanek, A., Bradley, J.T.: Fluid computation of passage-time distributions in large Markov models. In: Proceedings of QAPL, vol. 413, pp. 106–141 (2012)
Hespanha, J.P.: StochDynTools – a MATLAB toolbox to compute moment dynamics for stochastic networks of bio-chemical reactions
Katoen, J.-P., Khattri, M., Zapreevt, I.S.: A Markov reward model checker. In: Proceedings of QEST, pp. 243–244. IEEE Computer Society (2005)
Kierzek, A.M.: STOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithm. Bioinformatics 18(3), 470–481 (2002)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Maybeck, P.S.: Stochastic Models, Estimation, and Control. Academic Press, New York (1982)
Milios, D., Sanguinetti, G., Schnoerr, D.: Probabilistic model checking for continuous-time Markov chains via sequential Bayesian inference. CoRR ArXiv, abs/1711.01863v2 (2018)
Minka, T.P.: A family of algorithms for approximate Bayesian inference. Ph.D. thesis, MIT (2001)
Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)
Schnoerr, D., Cseke, B., Grima, R., Sanguinetti, G.: Efficient low-order approximation of first-passage time distributions. Phys. Rev. Lett. 119, 210601 (2017)
Schnoerr, D., Sanguinetti, G., Grima, R.: Validity conditions for moment closure approximations in stochastic chemical kinetics. J. Chem. Phys. 141(8), 08B616\_1 (2014)
Schnoerr, D., Sanguinetti, G., Grima, R.: Comparison of different moment-closure approximations for stochastic chemical kinetics. J. Chem. Phys. 143(18), 11B610\_1 (2015)
Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics - a tutorial review. J. Phys. A 50(9), 093001 (2017)
Younes, H.L., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)
Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to Simulink/Stateflow verification. In: Proceedings of HSCC, pp. 243–252. ACM (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Milios, D., Sanguinetti, G., Schnoerr, D. (2018). Probabilistic Model Checking for Continuous-Time Markov Chains via Sequential Bayesian Inference. In: McIver, A., Horvath, A. (eds) Quantitative Evaluation of Systems. QEST 2018. Lecture Notes in Computer Science(), vol 11024. Springer, Cham. https://doi.org/10.1007/978-3-319-99154-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-99154-2_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99153-5
Online ISBN: 978-3-319-99154-2
eBook Packages: Computer ScienceComputer Science (R0)