Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Facial Expression to Detect Emotion in E-learning System: A Deep Learning Method

  • Conference paper
  • First Online:
Emerging Technologies for Education (SETE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10676))

Included in the following conference series:

Abstract

E-learning system is becoming more and more popular among students nowadays. However, the emotion of students is usually neglected in e-learning system. This study is mainly concerned about using facial expression to detect emotion in e-learning system. A deep learning method called convolutional neural network (CNN) is used in our research. Firstly, CNN is introduced to detect emotion in e-learning system based on using facial expression in this paper. Secondly, the training process and testing process of CNN are described. To learn about the accuracy of CNN in emotion detection, three databases (CK+, JAFFE and NVIE) are chosen to train and test the model. 10-fold cross validation method is used to calculate the accuracy. Thirdly, we introduce how to apply the trained CNN to e-learning system, and the design of e-learning system with emotion detection module is given. At last, we propose the design of an experiment to evaluate the performance of this method in real e-learning system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Regan, K.: Emotion and e-learning. J. Asynchronous Learn. Netw. 7(3), 78–92 (2003)

    Google Scholar 

  2. Woolf, B.P.: Building Intelligent Interactive Tutors: Student Centered Strategies for Revolutionizing E-Learning, vol. 59. Morgan Kaufmann Inc., Burlington (2010). 337–379

    Google Scholar 

  3. Yi, M.J.D., Kuilenburg, H.V.: The FaceReader: online facial expression recognition. In: Proceedings of the Measuring Behaviour, vol. 30, pp. 589–590 (2005)

    Google Scholar 

  4. Yu, C.Y., Ko, C.H.: Applying FaceReader to recognize consumer emotions in graphic styles ☆. Procedia Cirp 60, 104–109 (2017)

    Article  Google Scholar 

  5. Moridis, C.N., Economides, A.A.: Affective learning: empathetic agents with emotional facial and tone of voice expressions. IEEE Trans. Affect. Comput. 3(3), 260–272 (2012)

    Article  Google Scholar 

  6. Chi-Chun, L., Emily, M., Carlos, B., Sungbok, L., Shrikanth, N.: Emotion recognition using a hierarchical binary decision tree approach. Speech Commun. 53(9–10), 1162–1171 (2011)

    Google Scholar 

  7. Chan, S.W.K., Chong, M.W.C.: Sentiment analysis in financial texts. Decis. Support Syst. 94, 53–64 (2017)

    Article  Google Scholar 

  8. Salmam, F.Z., Madani, A., Kissi, M.: Facial expression recognition using decision trees. In: IEEE International Conference on Computer Graphics, Imaging and Visualization, pp. 125–130 (2016)

    Google Scholar 

  9. Lee, S.H., Kostas, P.K.N., Yong, M.R.: Intra-class variation reduction using training expression images for sparse representation based facial expression recognition. IEEE Trans. Affect. Comput. 5(3), 340–351 (2014)

    Article  Google Scholar 

  10. Brodny, G., Kołakowska, A., Landowska, A., Szwoch, M., Szwoch, W., Wróbel, M.R.: Comparison of selected off-the-shelf solutions for emotion recognition based on facial expressions. In: IEEE International Conference on Human System Interactions, pp. 397–404 (2016)

    Google Scholar 

  11. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: IEEE Computer Vision and Pattern Recognition Workshops, vol. 36, pp. 94–101 (2010)

    Google Scholar 

  12. Valstar, M.F., Pantic, M.: Induced disgust happiness and surprise: an addition to the MMI facial expression database. In: Proceedings of the International Workshop on Emotion Corpora for Research on Emotion & Affect, pp. 65–70 (2010)

    Google Scholar 

  13. Han, Z.Y., Wang, J., Bohai University: Emotion visualization method for speech and facial expression signals. Electron. Des. Eng. 24, 146–149 (2016)

    Google Scholar 

  14. Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor wavelets. In: 1998 IEEE International Conference on Automatic Face and Gesture Recognition Proceedings, pp. 200–205 (1998)

    Google Scholar 

  15. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)

    Article  Google Scholar 

  16. Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R.M., Makhoul, J.: Fast and robust neural network joint models for statistical machine translation. In ACL (1), pp. 1370–1380 (2014)

    Google Scholar 

  17. Sun, Y., Liang, D., Wang, X., Tang, X.: Deepid3: face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873 (2015)

  18. Ekman, P., Rolls, E.T., Perrett, D.I., Ellis, H.D.: Facial expressions of emotion: an old controversy and new findings. Philos. Trans. R. Soc. B: Biolog. Sci. 335(1273), 63–69 (1992)

    Article  Google Scholar 

  19. Eskil, M.T., Benli, K.S.: Facial expression recognition based on anatomy. Comput. Vis. Image Underst. 119, 1–14 (2014)

    Article  Google Scholar 

  20. Friesen, E., Ekman, P.: Facial action coding system: a technique for the measurement of facial movement, Palo Alto (1978)

    Google Scholar 

  21. Soleymani, M., Asghari-Esfeden, S., Fu, Y., Pantic, M.: Analysis of EEG signals and facial expressions for continuous emotion detection. IEEE Trans. Affect. Comput. 7(1), 17–28 (2016)

    Article  Google Scholar 

  22. Lv, Y., Feng, Z., Xu, C.: Facial expression recognition via deep learning. In: IEEE International Conference on Smart Computing (SMARTCOMP), pp. 303–308 (2014)

    Google Scholar 

  23. Jung, H., Lee, S., Park, S., Kim, B., Kim, J., Lee, I., Ahn, C.: Development of deep learning-based facial expression recognition system. In: IEEE Korea-Japan Joint Workshop on Frontiers of Computer Vision, pp. 1–4 (2015)

    Google Scholar 

  24. Liu, M., Li, S., Shan, S., Chen, X.: Au-inspired deep networks for facial expression feature learning. Neurocomputing 159, 126–136 (2015)

    Article  Google Scholar 

  25. Ortigosa, A., Martín, J.M., Carro, R.M.: Sentiment analysis in Facebook and its application to e-learning. Comput. Hum. Behav. 31, 527–541 (2014)

    Article  Google Scholar 

  26. Qin, J., Zheng, Q., Li, H.: A study of learner-oriented negative emotion compensation in e-learning. Educ. Technol. Soc. 17(4), 420–431 (2014)

    Google Scholar 

  27. Sun, J.M., Pei, X.S., Zhou, S.S.: Facial emotion recognition in modern distant education system using SVM. In: IEEE International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3545–3548 (2008)

    Google Scholar 

  28. Ashwin, T.S., Jose, J., Raghu, G., Reddy, G.R.M.: An e-learning system with multifacial emotion recognition using supervised machine learning. In: IEEE International Conference on Technology for Education, pp. 23–26 (2015)

    Google Scholar 

  29. Wang, S., Liu, Z., Lv, S., Lv, Y., Wu, G., Peng, P., et al.: A natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Trans. Multimedia 12(7), 682–691 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, A., Li, YJ., Huang, YM., Li, Q. (2017). Using Facial Expression to Detect Emotion in E-learning System: A Deep Learning Method. In: Huang, TC., Lau, R., Huang, YM., Spaniol, M., Yuen, CH. (eds) Emerging Technologies for Education. SETE 2017. Lecture Notes in Computer Science(), vol 10676. Springer, Cham. https://doi.org/10.1007/978-3-319-71084-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71084-6_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71083-9

  • Online ISBN: 978-3-319-71084-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics