Abstract
The widespread proliferation of location-acquisition techniques and GPS-embedded mobile devices have resulted in the generation of geo-tagged data at unprecedented scale and have essentially enhanced the user experience in location-based services associated with social networks. Such location-based social networks allow people to record and share their location and are a rich source of information which can be exploited to study people’s various attributes and characteristics to provide various Geo-Social (GS) services. In this paper, we propose a new type of query called Top-k famous places \(T_kFP\) query, which enriches the semantics of the conventional spatial query by introducing a social relevance component. In addition, three approaches namely, (1) Social-First (2) Spatial-First and (3) Hybrid are proposed to efficiently process \(T_kFP\) queries. Finally, we conduct an exhaustive evaluation of the proposed schemes using real and synthetic datasets and demonstrate the effectiveness of the proposed approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Curtiss, M., Becker, I., Bosman, T., Doroshenko, S., Grijincu, L., Jackson, T., Kunnatur, S., Lassen, S., Pronin, P., Sankar, S., Shen, G., Woss, G., Yang, C., Zhang, N.: Unicorn: a system for searching the social graph. PVLDB 6(11), 1150–1161 (2013)
Ahuja, R., Armenatzoglou, N., Papadias, D., Fakas, G.J.: Geo-social keyword search. In: Claramunt, C., Schneider, M., Wong, R.C.-W., Xiong, L., Loh, W.-K., Shahabi, C., Li, K.-J. (eds.) SSTD 2015. LNCS, vol. 9239, pp. 431–450. Springer, Heidelberg (2015)
Armenatzoglou, N., Ahuja, R., Papadias, D.: Geo-social ranking: functions and query processing. VLDB J. 24(6), 783–799 (2015)
Emrich, T., Franzke, M., Mamoulis, N., Renz, M., Züfle, A.: Geo-social skyline queries. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part II. LNCS, vol. 8422, pp. 77–91. Springer, Heidelberg (2014)
Doytsher, Y., Galon, B., Kanza, Y.: Managing socio-spatial data as large graphs. In: WWW (2012)
Liu, W., Sun, W., Chen, C., Huang, Y., Jing, Y., Chen, K.: Circle of friend query in geo-social networks. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part II. LNCS, vol. 7239, pp. 126–137. Springer, Heidelberg (2012)
Yang, D.N., Shen, C.Y., Lee, W.C., Chen, M.S.: On socio-spatial group query for location-based social networks. In: KDD 2012, Beijing (2012)
Armenatzoglou, N., Papadopoulos, S., Papadias, D.: A general framework for geo-social query processing. In: Proceedings of the VLDB Endowment (2013)
Ference, G., Ye, M., Lee, W.C.: Location recommendation for out-of-town users in location-based social networks. In: 22nd ACM, CIKM, San Francisco (2013)
Mouratidis, K., Li, J., Tang, Y., Mamoulis, N.: Joint search by social and spatial proximity. IEEE Trans. Knowl. Data Eng. 27(3), 781–793 (2015)
Doytsher, Y., Galon, B., Kanza, Y.: Querying geo-social data by bridging spatial networks and social networks. In: LBSN, San Jose (2010)
Huang, Q., Liu, Y.: On geo-social network services. In: 17th International Conference on Geoinformatics, 2009, pp. 1–6. IEEE (2009)
Ye, M., Yin, P., Lee, W.C.: Location recommendation for location-based social networks. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 458–461. ACM (2010)
Sarwat, M., Levandoski, J.J., Eldawy, A., Mokbel, M.F.: Lars*: an efficient and scalable location-aware recommender system. IEEE Trans. Knowl. Data Eng. 26, 1384–1399 (2014)
Gao, H., Liu, H.: Data analysis on location-based social networks. In: Chin, A., Zhang, D. (eds.) Mobile Social Networking, pp. 165–194. Springer, New York (2014)
Li, J., Cardie, C., Timeline generation: tracking individuals on twitter. In: 23rd International World Wide Web Conference, WWW 2014, Seoul (2014)
Li, G., Chen, S., Feng, J., Tan, K. L., Li, W.S.: Efficient location-aware influence maximization. In: SIGMOD, Snowbird (2014)
Wu, D., Li, Y., Choi, B., Xu, J.: Social-aware top-k spatial keyword search. In: IEEE MDM, 2014, Brisbane (2014)
Jiang, J., Lu, H., Yang, B., Cui, B.: Finding top-k local users in geo-tagged social media data. In: 31st IEEE ICDE 2015, Seoul (2015)
Memcached. http://memcached.org/
Twitter: Real-time Geo. http://slideshare.net/raffikrikorian/rtgeo-where-20-2011
GeoSpatial indexes in MongoDB. http://docs.mongodb.org/manual/core/geospatial-indexes/
Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD 1984, pp. 47–57 (1984)
Cho, E., Myers, S.A., Leskovec, J., Friendship, mobility: user movement in location-based social networks. In: KDD. ACM (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Sohail, A., Murtaza, G., Taniar, D. (2016). Retrieving Top-k Famous Places in Location-Based Social Networks. In: Cheema, M., Zhang, W., Chang, L. (eds) Databases Theory and Applications. ADC 2016. Lecture Notes in Computer Science(), vol 9877. Springer, Cham. https://doi.org/10.1007/978-3-319-46922-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-46922-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46921-8
Online ISBN: 978-3-319-46922-5
eBook Packages: Computer ScienceComputer Science (R0)