Abstract
In this paper, we propose Geo-Social Keyword (GSK) search, which enables the retrieval of users, points of interest (POIs), or keywords that satisfy geographic, social, and/or textual criteria. We first introduce a general GSK framework that covers a wide range of real-world tasks, including advertisement, context-based search, and market analysis. Then, we present three concrete GSK queries: (i) NPRU that returns the top-k users based on their spatial proximity to a given query location, their popularity, and their similarity to an input set of terms; (ii) NSTP that outputs the top-k POIs based on their proximity to a user v, the number of check-ins by friends of v, and their similarity to a set of terms; (iii) FSKR that discovers the top-k keywords based on their frequency in pairs of friends located within a spatial area. For each query, we develop a processing algorithm that utilizes a novel hybrid index. Finally, we evaluate our framework with thorough experiments using real datasets.
R. Ahuja—Supported by GRF grant 617412 from Hong Kong RGC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
F should satisfy the condition \(\forall o, o': f_g(o)\ge f_g(o') \wedge f_s(o)\ge f_s(o') \wedge f_t(o)\ge f_t(o') \Rightarrow F(o)\ge F(o')\).
- 2.
A bloom filter is a space-efficient probabilistic data structure that is used to test whether an element is a member of a set [6].
- 3.
Additional constraints in this case could restrict the top-k POIs to be in a certain area, or enforce certain properties (e.g., restaurant must be open after 10 pm).
References
Facebook ads, audience targeting. https://www.facebook.com/help/229438340403916
Google mobile maps. http://www.google.com/mobile/maps/
GroupOn Now! deals available on Foursquare. https://blog.groupon.com/cities/groupon-now-deals-available-in-foursquare/
Yelp academic dataset. http://www.yelp.com/dataset_challenge/
Armenatzoglou, N., Papadopoulos, S., Papadias, D.: A general framework for geo-social query processing. Proc. VLDB Endow. 6(10), 913–924 (2013)
Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. of ACM 13(7), 422–426 (1970)
Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD (2011)
Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. Proc. VLDB Endow. 6(3), 217–228 (2013)
Chen, Y.-Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web search engines. In: SIGMOD (2006)
Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. Proc. VLDB Endow. 2(1), 337–348 (2009)
De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE (2008)
Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.E.: Main memory evaluation of monitoring queries over moving objects. Distrib. Parallel Databases 15(2), 117–135 (2004)
Kargar, M., An, A.: Discovering top-k teams of experts with/without a leader in social networks. In: CIKM (2011)
Kargar, M., An, A.: Keyword search in graphs: finding r-cliques. Proc. VLDB Endow. 4(10), 681–692 (2011)
Khodaei, A., Shahabi, C., Li, C.: Hybrid indexing and seamless ranking of spatial and textual features of web documents. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 450–466. Springer, Heidelberg (2010)
Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In: SIGKDD (2009)
Liu, W., Sun, W., Chen, C., Huang, Y., Jing, Y., Chen, K.: Circle of friend query in geo-social networks. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012, Part II. LNCS, vol. 7239, pp. 126–137. Springer, Heidelberg (2012)
Long, C., Wong, R.C.-W., Wang, K., Fu, A.W.-C.: Collective spatial keyword queries: a distance owner-driven approach. In: SIGMOD (2013)
Mouratidis, K., Li, J., Tang, Y., Mamoulis, N.: Joint search by social and spatial proximity. IEEE Trans. Knowl. Data Eng. 10(16), 1169–1184 (2015)
Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-textual Indexing for geographical search on the web. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 218–235. Springer, Heidelberg (2005)
Otto, A., Kaulfersch, E., Brinkfeldt, K., Neumaier, K., Zschieschang, O., Andersson, D., Rzepka, S.: Reliability of new SiC BJT power modules for fully electric vehicles. In: Fischer-Wolfarth, J., Meyer, G. (eds.) Advanced Microsystems for Automotive Applications 2014. LNMOB, vol. 1, pp. 235–244. Springer, Heidelberg (2014)
Yang, D.-N., Shen, C.-Y. Lee, W.-C., Chen, M.-S.: On socio-spatial group query for location-based social networks. In: KDD (2012)
Zhang, D., Chee, Y.M., Mondal, A., Tung, A., Kitsuregawa, M.: Keyword search in spatial databases: towards searching by document. In: ICDE (2009)
Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma. W.-Y.: Hybrid index structures for location-based web search. In: CIKM (2005)
Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2), 6.1–6.56 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ahuja, R., Armenatzoglou, N., Papadias, D., Fakas, G.J. (2015). Geo-Social Keyword Search. In: Claramunt, C., et al. Advances in Spatial and Temporal Databases. SSTD 2015. Lecture Notes in Computer Science(), vol 9239. Springer, Cham. https://doi.org/10.1007/978-3-319-22363-6_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-22363-6_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22362-9
Online ISBN: 978-3-319-22363-6
eBook Packages: Computer ScienceComputer Science (R0)