Nothing Special   »   [go: up one dir, main page]

Skip to main content

NP-Hard Problems and Approximation Algorithms

  • Chapter
  • First Online:
Introduction to Combinatorial Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 196))

  • 1488 Accesses

Abstract

The class P consists of all polynomial-time solvable decision problems. What is the class NP? There are two popular misunderstandings:

  1. (1)

    NP is the class of problems which are not polynomial-time solvable.

  2. (2)

    A decision problem belongs to the class NP if its answer can be checked in polynomial-time.

The biggest difference between time and space is that you can’t reuse time.

Merrick Furst

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    If they are rational numbers, then we can transform them into integers. If some of them are irrational numbers, then we have to touch the complexity theory of real number computation, which is out of scope of this book.

  2. 2.

    Theorem 8.3.9 states for undirected graphs. The same theorem also holds for directed graphs since the graph can be seen as special case of directed graphs.

References

  1. S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy: Proof verification and hardness of approximation problems, Proceedings, 33rd IEEE Symposium on Foundations of Computer Science, pp. 14–23, 1992.

    Google Scholar 

  2. S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy: Proof verification and hardness of approximation problems, Journal of the ACM, 45: 753–782 (1998).

    Article  MathSciNet  Google Scholar 

  3. S. Arora and S. Safra: Probabilistic checking of proofs: A new characterization of NP, Proceedings, 33rd IEEE Symposium on Foundations of Computer Science, pp. 2–13, 1992.

    Google Scholar 

  4. S. Arora and S. Safra: Probabilistic checking of proofs: A new characterization of NP, J. Assoc. Comput. Mach., 45: 70–122 (1998).

    Article  MathSciNet  Google Scholar 

  5. Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige: Aravindan vijayaraghavan: detecting high log-densities – an O(n 1∕4) approximation for densest k-subgraph, Proceedings, 42nd ACM International Symposium on Theory of Computing, ACM, New York, pp. 201–210, 2010.

    Google Scholar 

  6. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha and M. Li: Approximation algorithms for directed Steiner problems, Journal of Algorithms, 33: 73–91 (1999).

    Article  MathSciNet  Google Scholar 

  7. N. Christofides: Worst-case analysis of a new heuristic for the travelling salesman problem, Technical Report, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA, 1976.

    Google Scholar 

  8. S.A. Cook: The complexity of theorem-proving procedures, Proceedings, 3rd ACM Symposium on Theory of Computing, pp. 151–158, 1971.

    Google Scholar 

  9. Ding-Zhu Du, Ker-I Ko, Xiaodong Hu: Design and Analysis of Approximation Algorithms, (Springer, 2012).

    Google Scholar 

  10. Uriel Feige: A threshold of \(\ln n\) for approximating set cover, J. ACM, 45(4): 634–652 (1998).

    Google Scholar 

  11. M.R. Garey and D.S. Johnson: The complexity of near-optimal graph coloring, J. Assoc. Comput. Mach., 23: 43–49 (1976).

    Article  MathSciNet  Google Scholar 

  12. M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness, (W. H. Freeman and Company, New York, 1979).

    MATH  Google Scholar 

  13. N. Garg, G. Konjevod, R. Ravi, A polylogarithmic approximation algorithm for the group Steiner tree problem, Proceedings, 9th SODA, vol. 95, p. 253, 1998.

    MathSciNet  MATH  Google Scholar 

  14. R.L. Graham: Bounds on multiprocessing timing anomalies, Bell System Tech. J., 45: 1563–1581 (1966).

    Article  Google Scholar 

  15. E. Halperin, R. Krauthgamer: Polylogarithmic inapproximability, Proceedings, 35th ACM Symposium on Theory of Computing, pp. 585–594, 2003.

    Google Scholar 

  16. J. Hastad: Clique is hard to approximate within n to the power 1 − ε, Acta Math., 182: 105–142 (1999).

    Article  MathSciNet  Google Scholar 

  17. J. Hastad: Some optimal inapproximability results, J. Assoc. Comput. Mach., 48: 798–859 (2001).

    Article  MathSciNet  Google Scholar 

  18. O.H. Ibarra and C.E. Kim: Fast approximation algorithms for the knapsack and sum of subset proble, J. Assoc. Comput. Mach., 22: 463–468 (1975).

    Article  MathSciNet  Google Scholar 

  19. R.M. Karp: Reducibility among combinatorial problems, in Complexity of Computer Computations, (E.E. Miller and J.W. Thatcher eds.), Plenum Press, New York, pp. 85–103, 1972.

    Google Scholar 

  20. S. Khanna, R. Motwani, M. Sudan and U. Vazirani: On syntactic versus computational views of approximability, SIAM J. Comput., 28: 164–191 (1999).

    Article  MathSciNet  Google Scholar 

  21. Ker-I Ko: Computational Complexity of Real Functions and Polynomial Time Approximation, Ph.D. Thesis, Ohio State University, Columbus, Ohio, 1979.

    Google Scholar 

  22. Zaixin Lu, Wei Zhang, Weili Wu, Joonmo Kim, Bin Fu: The complexity of influence maximization problem in the deterministic linear threshold model, J. Comb. Optim., 24(3): 374–378 (2012).

    Article  MathSciNet  Google Scholar 

  23. Zaixin Lu, Wei Zhang, Weili Wu, Bin Fu, Ding-Zhu Du: Approximation and inapproximation for the influence maximization problem in social networks under deterministic linear threshold model, ICDCS Workshops, pp. 160–165, 2011.

    Google Scholar 

  24. Zaixin Lu, Zhao Zhang, Weili Wu: Solution of Bharathi-Kempe-Salek conjecture for influence maximization on arborescence, J. Comb. Optim., 33(2): 803–808 (2017).

    Article  MathSciNet  Google Scholar 

  25. C. Lund, M. Yanakakis: On the hardness of approximating minimization problems, J. ACM, 41(5): 960–981 (1994).

    Article  MathSciNet  Google Scholar 

  26. C. Papadimitriou and M. Yannakakis: Optimization, approximations, and complexity classes, Proceedings, 20th ACM Symposium on Theory of Computing, pp. 229–234, 1988.

    Google Scholar 

  27. R. Raz and S. Safra: A sub-constant error-probability low-degree test, and a subconstant error-probability PCP characterization of NP, Proceedings, 28th ACM Symposium on Theory of Computing, pp. 474–484, 1997.

    Google Scholar 

  28. S. Sahni: Approximate algorithms for the 0/1 knapsack problem, J. Assoc. Comput. Mach., 22: 115–124 (1975).

    Article  MathSciNet  Google Scholar 

  29. S. Sahni and T. Gonzalez: P-complete approximation algorithms, J. Assoc. Comput. Mach., 23: 555–565 (1976).

    Article  MathSciNet  Google Scholar 

  30. Wei Zhang, Weili Wu, Wonjun Lee, Ding-Zhu Du: Complexity and approximation of the connected set-cover problem, J. Glob. Optim., 53(3): 563–572 (2012).

    Article  Google Scholar 

  31. Zhao Zhang, Weili Wu, Jing Yuan, Ding-Zhu Du: Breach-free sleep-wakeup scheduling for barrier coverage with heterogeneous wireless sensors, IEEE/ACM Trans. Netw., 26(5): 2404–2413 (2018).

    Article  Google Scholar 

  32. D. Zuckerman: Linear degree extractors and the inapproximability of max clique and chromatic number, Proceedings, 38th ACM Symposium on Theory of Computing, pp. 681–690, 2006.

    Google Scholar 

  33. D. Zuckerman: Linear degree extractors and the inapproximability of Max Clique and Chromatic Number, Theory Comput., 3: 103–128 (2007).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, DZ., Pardalos, P., Hu, X., Wu, W. (2022). NP-Hard Problems and Approximation Algorithms. In: Introduction to Combinatorial Optimization. Springer Optimization and Its Applications, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-031-10596-8_8

Download citation

Publish with us

Policies and ethics