Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Clique is hard to approximate withinn 1−ε

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M. & Szegedy, M., Proof verification and the hardness of approximation problems, in33rd Annual IEEE Symposium on Foundations of Computer Science (Pittsburgh, PA, 1992), pp. 14–23. To appear inJ. ACM.

  2. Arora, S. &Safra, S., Probabilistic checking of proofs: a new characterization of NP.J. ACM, 45 (1998), 70–122.

    Article  MathSciNet  MATH  Google Scholar 

  3. Babai, L., Trading group theory for randomness, in17th Annual ACM Symposium on Theory of Computing (Providence, RI, 1985), pp. 420–429.

  4. Babai, L., Fortnow, L., Levin, L. & Szegedy, M., Checking computations in polynomial time, in23rd Annual ACM Symposium on Theory of Computing (New Orleans, LA, 1991), pp. 21–31.

  5. Babai, L., Fortnow, L. &Lund, C., Nondeterministic exponential time has two-prover interactive protocols.Comput. Complexity, 1 (1991), 3–40.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M. &Sudan, M., Linearity testing in characteristic two.IEEE Trans. Inform. Theory, 42 (1996), 1781–1796.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellare, M., Goldreich, O. &Sudan, M., Free bits PCPs and nonapproximability—towards tight results.SIAM J. Comput., 27 (1998), 804–915.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellare, M., Goldwasser, S., Lund, C. & Russell, A., Efficient probabilistically checkable proofs and applications to approximation, in25th Annual ACM Symposium on Theory of Computing (San Diego, CA, 1993), pp. 294–304.

  9. Bellare, M. & Sudan, M., Improved nonapproximability results, in26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 184–193.

  10. Ben-Or, M., Goldwasser, S., Kilian, J. & Wigderson, A., Multiprover interactive proofs. How to remove intractability, in20th Annual ACM Symposium on Theory of Computing (Chicago, IL, 1988), pp. 113–131.

  11. Berman, P. &Schnitger, G., On the complexity of approximating the independent set problem.Inform. and Comput., 96 (1992), 77–94.

    Article  MathSciNet  MATH  Google Scholar 

  12. Boppana, R. &Halldórsson, M., Approximating maximum independent sets by excluding subgraphs.BIT, 32 (1992), 180–196.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bourgain, J., Walsh subspaces ofLp-product spaces, inSeminaire d'analyse fonctionnelle (1979–1980), pp. 4.1–4.9. École Polytechnique, Palaiseau, 1980.

    Google Scholar 

  14. Cook, S. A., The complexity of theorem proving procedure, in3rd Annual ACM Symposium on Theory of Computing (1971), pp. 151–158.

  15. Feige, U., A threshold of lnn for approximating set cover, in28th Annual ACM Symposium on Theory of Computing (Philadelphia, PA, 1996), pp. 314–318. To appear inJ. ACM.

  16. Feige, U. &Goemans, M., Approximating the value of two-prover proof systems, with applications to MAX 2SAT and MAX DICUT, in3rd Israel Symposium on the Theory of Computing and Systems (Tel Aviv, 1995), pp. 182–189. IEEE Comput. Soc. Press, Los Alamitos, CA, 1995.

    Google Scholar 

  17. Feige, U., Goldwasser, S., Lovász, L., Safra, S. &Szegedy, M., Interactive proofs and the hardness of approximating cliques.J. ACM, 43 (1996), 268–292.

    Article  MathSciNet  MATH  Google Scholar 

  18. Feige, U. & Kilian, J., Two prover protocols—Low error at affordable rates, in26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 172–183.

  19. Feige, U., Zero-knowledge and the chromatic number, in11th Annual IEEE Conference on Computational Complexity (Philadelphia, PA, 1996), pp. 278–287.

  20. Fortnow, L., Rompel, J. & Sipser, M., On the power of multi-prover interactive protocols, in3rd IEEE Symposium on Structure in Complexity Theory (1988), pp. 156–161.

  21. Garey, M. R. &Johnson, D. S.,Computers and Intractability. A Guide to the Theory of NP-completeness. W. H. Freeman, San Fransisco, CA, 1979.

    MATH  Google Scholar 

  22. Goemans, M. & Williamson, D., 878-approximation algorithms for Max-Cut and Max-2-SAT, in26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 422–431.

  23. Goldwasser, S., Micali, S. &Rackoff, C., The knowledge complexity of interactive proof systems.SIAM J. Comput., 18 (1989), 186–208.

    Article  MathSciNet  MATH  Google Scholar 

  24. Håstad, J., Testing of the long code and hardness for clique, in28th Annual ACM Symposium on Theory of Computing (Philadelphia, PA, 1996), pp. 11–19. ACM, New York, 1996.

    Google Scholar 

  25. —, Clique is hard to approximate withinn 1−ε in37th Annual IEEE Symposium on Foundations of Computer Science (Burlington, VT, 1996), pp. 627–636. IEEE Comput. Soc. Press, Les Alamitos, CA, 1996.

    Google Scholar 

  26. Håstad, J., Some optimal in-approximability results, in29th Annual ACM Symposium on Theory of Computing (1997), pp. 1–10.

  27. Johnson, D. S., Approximation algorithms for combinatorial, problems.J. Comput. System Sci., 9 (1974), 256–278.

    Article  MATH  MathSciNet  Google Scholar 

  28. Lund, C., Fortnow, L., Karloff, H. &Nisan, N., Algebraic methods for interactive proof systems.J. ACM, 39 (1992), 859–868.

    Article  MathSciNet  MATH  Google Scholar 

  29. Motwani, R. &Raghavan, P.,Randomized Algorithms. Cambridge Univ. Press, Cambridge, 1995.

    MATH  Google Scholar 

  30. Papadimitriou, C.,Computational Complexity. Addison-Wesley, Reading, MA, 1994.

    MATH  Google Scholar 

  31. Papadimitriou, C. &Yannakakis, M. Optimization, approximation and complexity classes,J. Comput. System Sci., 43 (1991), 425–440.

    Article  MathSciNet  MATH  Google Scholar 

  32. Raz, R., A parallel repetition theorem.SIAM J. Comput. 27 (1998), 763–803.

    Article  MATH  MathSciNet  Google Scholar 

  33. Shamir, A., IP=PSPACE.J. ACM, 39 (1992), 869–877.

    Article  MATH  MathSciNet  Google Scholar 

  34. Zuckerman, D., On unapproximable versions of NP-complete problems.SIAM J. Comput., 25 (1996), 1293–1304.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Håstad, J. Clique is hard to approximate withinn 1−ε . Acta Math. 182, 105–142 (1999). https://doi.org/10.1007/BF02392825

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392825

Navigation