References
Arora, S., Lund, C., Motwani, R., Sudan, M. & Szegedy, M., Proof verification and the hardness of approximation problems, in33rd Annual IEEE Symposium on Foundations of Computer Science (Pittsburgh, PA, 1992), pp. 14–23. To appear inJ. ACM.
Arora, S. &Safra, S., Probabilistic checking of proofs: a new characterization of NP.J. ACM, 45 (1998), 70–122.
Babai, L., Trading group theory for randomness, in17th Annual ACM Symposium on Theory of Computing (Providence, RI, 1985), pp. 420–429.
Babai, L., Fortnow, L., Levin, L. & Szegedy, M., Checking computations in polynomial time, in23rd Annual ACM Symposium on Theory of Computing (New Orleans, LA, 1991), pp. 21–31.
Babai, L., Fortnow, L. &Lund, C., Nondeterministic exponential time has two-prover interactive protocols.Comput. Complexity, 1 (1991), 3–40.
Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M. &Sudan, M., Linearity testing in characteristic two.IEEE Trans. Inform. Theory, 42 (1996), 1781–1796.
Bellare, M., Goldreich, O. &Sudan, M., Free bits PCPs and nonapproximability—towards tight results.SIAM J. Comput., 27 (1998), 804–915.
Bellare, M., Goldwasser, S., Lund, C. & Russell, A., Efficient probabilistically checkable proofs and applications to approximation, in25th Annual ACM Symposium on Theory of Computing (San Diego, CA, 1993), pp. 294–304.
Bellare, M. & Sudan, M., Improved nonapproximability results, in26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 184–193.
Ben-Or, M., Goldwasser, S., Kilian, J. & Wigderson, A., Multiprover interactive proofs. How to remove intractability, in20th Annual ACM Symposium on Theory of Computing (Chicago, IL, 1988), pp. 113–131.
Berman, P. &Schnitger, G., On the complexity of approximating the independent set problem.Inform. and Comput., 96 (1992), 77–94.
Boppana, R. &Halldórsson, M., Approximating maximum independent sets by excluding subgraphs.BIT, 32 (1992), 180–196.
Bourgain, J., Walsh subspaces ofLp-product spaces, inSeminaire d'analyse fonctionnelle (1979–1980), pp. 4.1–4.9. École Polytechnique, Palaiseau, 1980.
Cook, S. A., The complexity of theorem proving procedure, in3rd Annual ACM Symposium on Theory of Computing (1971), pp. 151–158.
Feige, U., A threshold of lnn for approximating set cover, in28th Annual ACM Symposium on Theory of Computing (Philadelphia, PA, 1996), pp. 314–318. To appear inJ. ACM.
Feige, U. &Goemans, M., Approximating the value of two-prover proof systems, with applications to MAX 2SAT and MAX DICUT, in3rd Israel Symposium on the Theory of Computing and Systems (Tel Aviv, 1995), pp. 182–189. IEEE Comput. Soc. Press, Los Alamitos, CA, 1995.
Feige, U., Goldwasser, S., Lovász, L., Safra, S. &Szegedy, M., Interactive proofs and the hardness of approximating cliques.J. ACM, 43 (1996), 268–292.
Feige, U. & Kilian, J., Two prover protocols—Low error at affordable rates, in26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 172–183.
Feige, U., Zero-knowledge and the chromatic number, in11th Annual IEEE Conference on Computational Complexity (Philadelphia, PA, 1996), pp. 278–287.
Fortnow, L., Rompel, J. & Sipser, M., On the power of multi-prover interactive protocols, in3rd IEEE Symposium on Structure in Complexity Theory (1988), pp. 156–161.
Garey, M. R. &Johnson, D. S.,Computers and Intractability. A Guide to the Theory of NP-completeness. W. H. Freeman, San Fransisco, CA, 1979.
Goemans, M. & Williamson, D., 878-approximation algorithms for Max-Cut and Max-2-SAT, in26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 422–431.
Goldwasser, S., Micali, S. &Rackoff, C., The knowledge complexity of interactive proof systems.SIAM J. Comput., 18 (1989), 186–208.
Håstad, J., Testing of the long code and hardness for clique, in28th Annual ACM Symposium on Theory of Computing (Philadelphia, PA, 1996), pp. 11–19. ACM, New York, 1996.
—, Clique is hard to approximate withinn 1−ε in37th Annual IEEE Symposium on Foundations of Computer Science (Burlington, VT, 1996), pp. 627–636. IEEE Comput. Soc. Press, Les Alamitos, CA, 1996.
Håstad, J., Some optimal in-approximability results, in29th Annual ACM Symposium on Theory of Computing (1997), pp. 1–10.
Johnson, D. S., Approximation algorithms for combinatorial, problems.J. Comput. System Sci., 9 (1974), 256–278.
Lund, C., Fortnow, L., Karloff, H. &Nisan, N., Algebraic methods for interactive proof systems.J. ACM, 39 (1992), 859–868.
Motwani, R. &Raghavan, P.,Randomized Algorithms. Cambridge Univ. Press, Cambridge, 1995.
Papadimitriou, C.,Computational Complexity. Addison-Wesley, Reading, MA, 1994.
Papadimitriou, C. &Yannakakis, M. Optimization, approximation and complexity classes,J. Comput. System Sci., 43 (1991), 425–440.
Raz, R., A parallel repetition theorem.SIAM J. Comput. 27 (1998), 763–803.
Shamir, A., IP=PSPACE.J. ACM, 39 (1992), 869–877.
Zuckerman, D., On unapproximable versions of NP-complete problems.SIAM J. Comput., 25 (1996), 1293–1304.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Håstad, J. Clique is hard to approximate withinn 1−ε . Acta Math. 182, 105–142 (1999). https://doi.org/10.1007/BF02392825
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02392825