Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Rough Choquet Distances

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2024)

Abstract

This paper introduces a novel Choquet distance using fuzzy rough set based measures. The proposed distance measure combines the attribute information received from fuzzy rough set theory with the flexibility of the Choquet integral. This approach is designed to adeptly capture non-linear relationships within the data, acknowledging the interplay of the conditional attributes towards the decision attribute and resulting in a more flexible and accurate distance. We explore its application in the context of machine learning, with a specific emphasis on distance-based classification approaches (e.g. k-nearest neighbours). The paper examines two fuzzy rough set based measures that are based on the positive region. Moreover, we explore two procedures for monotonizing the measures derived from fuzzy rough set theory, making them suitable for use with the Choquet integral, and investigate their differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abril, D., Navarro-Arribas, G., Torra, V.: Choquet integral for record linkage. Ann. Oper. Res. 195, 97–110 (2012). https://doi.org/10.1007/s10479-011-0989-x

    Article  MathSciNet  Google Scholar 

  2. Beliakov, G., Pradera, A., Calvo, T., et al.: Aggregation functions: A guide for practitioners, vol. 221. Springer (2007). https://doi.org/10.1007/978-3-540-73721-6

  3. Bolton, J., Gader, P., Wilson, J.N.: Discrete Choquet integral as a distance metric. IEEE Trans. Fuzzy Syst. 16(4), 1107–1110 (2008)

    Article  Google Scholar 

  4. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 93–104 (2000)

    Google Scholar 

  5. Cornelis, C., Jensen, R., Hurtado, G., Ślȩzak, D.: Attribute selection with fuzzy decision reducts. Inf. Sci. 180(2), 209–224 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cornelis, C., Martín, G.H., Jensen, R., Ślȩzak, D.: Feature selection with fuzzy decision reducts. In: Proceedings of the 3rd International Conference on Rough Sets and Knowledge Technology (RSKT2008), pp. 284–291. Springer (2008). https://doi.org/10.1007/978-3-540-79721-0_41

  7. Denneberg, D.: Non-additive measure and integral, vol. 27. Springer (2013). https://doi.org/10.1007/978-94-017-2434-0

  8. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  9. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. Oper. Res. 175(1), 247–286 (2010). https://doi.org/10.1007/s10479-009-0655-8

    Article  MathSciNet  Google Scholar 

  10. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)

    Article  Google Scholar 

  11. Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification. In: Transactions on rough sets XIII, pp. 56–72. Springer (2011). https://doi.org/10.1007/978-3-642-18302-7_4

  12. Lenz, O.U., Bollaert, H., Cornelis, C.: A unified weighting framework for evaluating nearest neighbour classification (2023). arXiv preprint arXiv:2311.16872

  13. Lenz, O.U., Peralta, D., Cornelis, C.: Scalable approximate FRNN-OWA classification. IEEE Trans. Fuzzy Syst. 28(5), 929–938 (2019)

    Article  Google Scholar 

  14. Ma, Y., Chen, H., Song, W., Wang, Z.: Choquet distances and their applications in data classification. J. Intell. Fuzzy Syst. 33(1), 589–599 (2017)

    Article  Google Scholar 

  15. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  Google Scholar 

  16. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets Syst. 126(2), 137–155 (2002)

    Article  MathSciNet  Google Scholar 

  17. Suárez, J.L., García, S., Herrera, F.: A tutorial on distance metric learning: mathematical foundations, algorithms, experimental analysis, prospects and challenges. Neurocomputing 425, 300–322 (2021)

    Article  Google Scholar 

  18. Theerens, A., Cornelis, C.: Fuzzy quantifier-based fuzzy rough sets. In: 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS), pp. 269–278 (2022). https://doi.org/10.15439/2022F231

  19. Theerens, A., Cornelis, C.: Fuzzy rough sets based on fuzzy quantification. Fuzzy Sets Syst. 473 (2023). https://doi.org/10.1016/j.fss.2023.108704

  20. Theerens, A., Cornelis, C.: On the granular representation of fuzzy quantifier-based fuzzy rough sets. Inf. Sci. (2024). https://doi.org/10.1016/j.ins.2024.120385

    Article  Google Scholar 

  21. Theerens, A., Lenz, O.U., Cornelis, C.: Choquet-based fuzzy rough sets. Int. J. Approximate Reasoning 146, 62–78 (2022)

    Article  MathSciNet  Google Scholar 

  22. Torra, V., Narukawa, Y.: On a comparison between Mahalanobis distance and Choquet integral: the Choquet-Mahalanobis operator. Inf. Sci. 190, 56–63 (2012)

    Article  MathSciNet  Google Scholar 

  23. Wang, Z., Klir, G.J.: Generalized measure theory, vol. 25. Springer (2010). https://doi.org/10.1007/978-0-387-76852-6

  24. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Theerens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Theerens, A., Cornelis, C. (2024). Fuzzy Rough Choquet Distances. In: Torra, V., Narukawa, Y., Kikuchi, H. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2024. Lecture Notes in Computer Science(), vol 14986. Springer, Cham. https://doi.org/10.1007/978-3-031-68208-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68208-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68207-0

  • Online ISBN: 978-3-031-68208-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics