Abstract
This paper introduces a novel Choquet distance using fuzzy rough set based measures. The proposed distance measure combines the attribute information received from fuzzy rough set theory with the flexibility of the Choquet integral. This approach is designed to adeptly capture non-linear relationships within the data, acknowledging the interplay of the conditional attributes towards the decision attribute and resulting in a more flexible and accurate distance. We explore its application in the context of machine learning, with a specific emphasis on distance-based classification approaches (e.g. k-nearest neighbours). The paper examines two fuzzy rough set based measures that are based on the positive region. Moreover, we explore two procedures for monotonizing the measures derived from fuzzy rough set theory, making them suitable for use with the Choquet integral, and investigate their differences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abril, D., Navarro-Arribas, G., Torra, V.: Choquet integral for record linkage. Ann. Oper. Res. 195, 97–110 (2012). https://doi.org/10.1007/s10479-011-0989-x
Beliakov, G., Pradera, A., Calvo, T., et al.: Aggregation functions: A guide for practitioners, vol. 221. Springer (2007). https://doi.org/10.1007/978-3-540-73721-6
Bolton, J., Gader, P., Wilson, J.N.: Discrete Choquet integral as a distance metric. IEEE Trans. Fuzzy Syst. 16(4), 1107–1110 (2008)
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 93–104 (2000)
Cornelis, C., Jensen, R., Hurtado, G., Ślȩzak, D.: Attribute selection with fuzzy decision reducts. Inf. Sci. 180(2), 209–224 (2010)
Cornelis, C., Martín, G.H., Jensen, R., Ślȩzak, D.: Feature selection with fuzzy decision reducts. In: Proceedings of the 3rd International Conference on Rough Sets and Knowledge Technology (RSKT2008), pp. 284–291. Springer (2008). https://doi.org/10.1007/978-3-540-79721-0_41
Denneberg, D.: Non-additive measure and integral, vol. 27. Springer (2013). https://doi.org/10.1007/978-94-017-2434-0
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, vol. 96, pp. 226–231 (1996)
Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann. Oper. Res. 175(1), 247–286 (2010). https://doi.org/10.1007/s10479-009-0655-8
Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)
Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification. In: Transactions on rough sets XIII, pp. 56–72. Springer (2011). https://doi.org/10.1007/978-3-642-18302-7_4
Lenz, O.U., Bollaert, H., Cornelis, C.: A unified weighting framework for evaluating nearest neighbour classification (2023). arXiv preprint arXiv:2311.16872
Lenz, O.U., Peralta, D., Cornelis, C.: Scalable approximate FRNN-OWA classification. IEEE Trans. Fuzzy Syst. 28(5), 929–938 (2019)
Ma, Y., Chen, H., Song, W., Wang, Z.: Choquet distances and their applications in data classification. J. Intell. Fuzzy Syst. 33(1), 589–599 (2017)
Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)
Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets Syst. 126(2), 137–155 (2002)
Suárez, J.L., García, S., Herrera, F.: A tutorial on distance metric learning: mathematical foundations, algorithms, experimental analysis, prospects and challenges. Neurocomputing 425, 300–322 (2021)
Theerens, A., Cornelis, C.: Fuzzy quantifier-based fuzzy rough sets. In: 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS), pp. 269–278 (2022). https://doi.org/10.15439/2022F231
Theerens, A., Cornelis, C.: Fuzzy rough sets based on fuzzy quantification. Fuzzy Sets Syst. 473 (2023). https://doi.org/10.1016/j.fss.2023.108704
Theerens, A., Cornelis, C.: On the granular representation of fuzzy quantifier-based fuzzy rough sets. Inf. Sci. (2024). https://doi.org/10.1016/j.ins.2024.120385
Theerens, A., Lenz, O.U., Cornelis, C.: Choquet-based fuzzy rough sets. Int. J. Approximate Reasoning 146, 62–78 (2022)
Torra, V., Narukawa, Y.: On a comparison between Mahalanobis distance and Choquet integral: the Choquet-Mahalanobis operator. Inf. Sci. 190, 56–63 (2012)
Wang, Z., Klir, G.J.: Generalized measure theory, vol. 25. Springer (2010). https://doi.org/10.1007/978-0-387-76852-6
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Theerens, A., Cornelis, C. (2024). Fuzzy Rough Choquet Distances. In: Torra, V., Narukawa, Y., Kikuchi, H. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2024. Lecture Notes in Computer Science(), vol 14986. Springer, Cham. https://doi.org/10.1007/978-3-031-68208-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-68208-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68207-0
Online ISBN: 978-3-031-68208-7
eBook Packages: Computer ScienceComputer Science (R0)