Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy-Rough Nearest Neighbour Classification

  • Conference paper
Transactions on Rough Sets XIII

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 6499))

Abstract

A new fuzzy-rough nearest neighbour (FRNN) classification algorithm is presented in this paper, as an alternative to Sarkar’s fuzzy-rough ownership function (FRNN-O) approach. By contrast to the latter, our method uses the nearest neighbours to construct lower and upper approximations of decision classes, and classifies test instances based on their membership to these approximations. In the experimental analysis, we evaluate our approach with both classical fuzzy-rough approximations (based on an implicator and a t-norm), as well as with the recently introduced vaguely quantified rough sets. Preliminary results are very good, and in general FRNN outperforms FRNN-O, as well as the traditional fuzzy nearest neighbour (FNN) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aha, D.: Instance-based learning algorithm. Machine Learning 6, 37–66 (1991)

    MathSciNet  Google Scholar 

  2. Bhatt, R.B., Gopal, M.: FRID: Fuzzy-Rough Interactive Dichotomizers. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2004), pp. 1337–1342 (2004)

    Google Scholar 

  3. Bian, H., Mazlack, L.: Fuzzy-Rough Nearest-Neighbor Classification Approach. In: Proceeding of the 22nd International Conference of the North American Fuzzy Information Processing Society (NAFIPS), pp. 500–505 (2003)

    Google Scholar 

  4. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of California, Irvine (1998), http://archive.ics.uci.edu/ml/

    Google Scholar 

  5. Cohen, W.W.: Fast effective rule induction. In: Machine Learning: Proceedings of the 12th International Conference, pp. 115–123 (1995)

    Google Scholar 

  6. Cornelis, C., De Cock, M., Radzikowska, A.M.: Vaguely Quantified Rough Sets. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 87–94. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Cornelis, C., De Cock, M., Radzikowska, A.M.: Fuzzy Rough Sets: from Theory into Practice. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing. Wiley, Chichester (2008)

    Google Scholar 

  8. Cornelis, C., Hurtado Martín, G., Jensen, R., Slezak, D.: Feature Selection with fuzzy decision reducts. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 284–291. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  10. Edwards, A.L.: An Introduction to Linear Regression and Correlation. W.H. Freeman, San Francisco (1976)

    Google Scholar 

  11. European Network for Fuzzy Logic and Uncertainty Modelling in Information Technology (ERUDIT), Protecting rivers and streams by monitoring chemical concentrations and algae communities, Computational Intelligence and Learning (CoIL) Competition (1999)

    Google Scholar 

  12. Greco, S., Inuiguchi, M., Slowinski, R.: Fuzzy rough sets and multiple-premise gradual decision rules. International Journal of Approximate Reasoning 41, 179–211 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hong, T.P., Liou, Y.L., Wang, S.L.: Learning with Hierarchical Quantitative Attributes by Fuzzy Rough Sets. In: Proceedings of the Joint Conference on Information Sciences, Advances in Intelligent Systems Research(2006)

    Google Scholar 

  14. Hsieh, N.-C.: Rule Extraction with Rough-Fuzzy Hybridization Method. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 890–895. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Jensen, R., Shen, Q.: Fuzzy-Rough Sets Assisted Attribute Selection. IEEE Transactions on Fuzzy Systems 15(1), 73–89 (2007)

    Article  Google Scholar 

  16. Jensen, R., Shen, Q.: Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches. Wiley-IEEE Press (2008)

    Google Scholar 

  17. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy K-nearest neighbor algorithm. IEEE Trans. Systems Man Cybernet. 15(4), 580–585 (1985)

    Article  Google Scholar 

  18. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishing, Dordrecht (1991)

    Book  MATH  Google Scholar 

  19. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  20. Quinlan, J.R.: C4.5: Programs for Machine Learning. The Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  21. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126(2), 137–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sarkar, M.: Fuzzy-Rough nearest neighbors algorithm. Fuzzy Sets and Systems 158, 2123–2152 (2007)

    Article  MathSciNet  Google Scholar 

  23. Shen, Q., Chouchoulas, A.: A rough-fuzzy approach for generating classification rules. Pattern Recognition 35(11), 2425–2438 (2002)

    Article  MATH  Google Scholar 

  24. Smola, A.J., Schölkopf, B.: A Tutorial on Support Vector Regression, NeuroCOLT2 Technical Report Series - NC2-TR-1998-030 (1998)

    Google Scholar 

  25. Wang, Y.: A new approach to fitting linear models in high dimensional spaces, PhD Thesis, Department of Computer Science, University of Waikato (2000)

    Google Scholar 

  26. Wang, X., Yang, J., Teng, X., Peng, N.: Fuzzy-Rough Set Based Nearest Neighbor Clustering Classification Algorithm. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3613, pp. 370–373. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Wang, X., Tsang, E.C.C., Zhao, S., Chen, D., Yeung, D.S.: Learning fuzzy rules from fuzzy samples based on rough set technique. Information Sciences 177(20), 4493–4514 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Witten, I.H., Frank, E.: Generating Accurate Rule Sets Without Global Optimization. In: Proceedings of the 15th International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco (1998)

    Google Scholar 

  29. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  30. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jensen, R., Cornelis, C. (2011). Fuzzy-Rough Nearest Neighbour Classification. In: Peters, J.F., Skowron, A., Chan, CC., Grzymala-Busse, J.W., Ziarko, W.P. (eds) Transactions on Rough Sets XIII. Lecture Notes in Computer Science, vol 6499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18302-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18302-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18301-0

  • Online ISBN: 978-3-642-18302-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics