Abstract
Artificial intelligence (AI) deep learning generative models play an increasingly important role in drug design. Developments of different drug generative models can save capital and time to promote new drug discovery. AI deep learning generative models can be divided into different generative models based on the different levels of dimensional features of receptors and ligands such as SMILES generative models, molecular graph generative models, and 3D molecule generative models. Besides, based on the different algorithms, AI deep learning generative models for drug discovery can be roughly classified as variational autoencoder generative model, generative adversarial network generative model, and flow based generative model, and diffusion generative model. In this chapter, the classification, general mathematical methods, and research reports of AI deep learning generative models are summarized based on the different levels of dimensional features and algorithms. This chapter proposes an interesting topic and a deep understanding of AI deep learning generative models for the scientific community.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., et al. (2014). QSAR modeling: Where have you been? Where are you going to? Journal of Medicinal Chemistry, 57(12), 4977–5010. https://doi.org/10.1021/jm4004285
Schneider, G., & Fechner, U. (2005). Computer-based de novo design of drug-like molecules. Nature Reviews. Drug Discovery, 4(8), 649–663. https://doi.org/10.1038/nrd1799
Bai, Q., Tan, S., Xu, T., Liu, H., Huang, J., & Yao, X. (2021). MolAICal: A soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Briefings in bioinformatics, 22(3), bbaa161.
Wang, R., Gao, Y., & Lai, L. (2000). LigBuilder: A multi-purpose program for structure-based drug design. Molecular Modeling Annual, 6(7), 498–516. https://doi.org/10.1007/s0089400060498
Cheron, N., Jasty, N., & Shakhnovich, E. I. (2016). OpenGrowth: An automated and rational algorithm for finding new protein ligands. Journal of Medicinal Chemistry, 59(9), 4171–4188. https://doi.org/10.1021/acs.jmedchem.5b00886
Bai, Q., Ma, J., Liu, S., Xu, T., Banegas-Luna, A. J., Pérez-Sánchez, H., et al. (2021). WADDAICA: A webserver for aiding protein drug design by artificial intelligence and classical algorithm. Computational and Structural Biotechnology Journal, 19, 3573–3579. https://doi.org/10.1016/j.csbj.2021.06.017
Bai, Q., Liu, S., Tian, Y., Xu, T., Banegas-Luna, A. J., Pérez-Sánchez, H., et al. (2022). Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(3), e1581. https://doi.org/10.1002/wcms.1581
Yang, S.-Q., Ye, Q., Ding, J.-J., Yin, M.-Z., Lu, A.-P., Chen, X., et al. (2021). Current advances in ligand-based target prediction. WIREs Computational Molecular Science, 11(3), e1504. https://doi.org/10.1002/wcms.1504
Polishchuk, P. G., Madzhidov, T. I., & Varnek, A. (2013). Estimation of the size of drug-like chemical space based on GDB-17 data. Journal of Computer-Aided Molecular Design, 27(8), 675–679. https://doi.org/10.1007/s10822-013-9672-4
Stumpfe, D., & Bajorath, J. (2012). Exploring activity cliffs in medicinal chemistry. Journal of Medicinal Chemistry, 55(7), 2932–2942. https://doi.org/10.1021/jm201706b
Wiswesser, W. J. (1985). Historic development of chemical notations. Journal of Chemical Information and Computer Sciences, 25(3), 258–263. https://doi.org/10.1021/ci00047a023
Wang, Y., Li, Z., & Farimani, A. B. (2022). Graph neural networks for molecules. arXiv preprint arXiv:220905582.
Xu, Y., Lin, K., Wang, S., Wang, L., Cai, C., Song, C., et al. (2019). Deep learning for molecular generation. Future Medicinal Chemistry, 11(6), 567–597. https://doi.org/10.4155/fmc-2018-0358
Li, Y., Vinyals, O., Dyer, C., Pascanu, R., & Battaglia, P. Learning deep generative models of graphs. arXiv preprint arXiv:180303324.
Satorras, V. G., Hoogeboom, E., & Welling M. (2021). E(n) equivariant graph neural networks. In International Conference on Machine Learning: PMLR (pp. 9323–9332).
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:13126114.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S, Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680).
Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing flows. In International Conference on Machine Learning: PMLR (pp. 1530–1538).
Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. In Advances in neural information processing systems (Vol. 33, pp. 6840–6451).
Segler, M. H., Kogej, T., Tyrchan, C., & Waller, M. P. (2018). Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Science, 4(1), 120–131.
Bagal, V., Aggarwal, R., Vinod, P., & Priyakumar, U. D. (2021). MolGPT: Molecular generation using a transformer-decoder model. Journal of Chemical Information and Modeling, 62(9), 2064–2076.
Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph generation. In International Conference on Machine Learning: PMLR (pp. 2323–2332).
Jin, W., Barzilay, R., & Jaakkola, T. (2020). Hierarchical generation of molecular graphs using structural motifs. In International Conference on Machine Learning: PMLR (pp. 4839–4848).
Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., & Tang, J. (2020). Graphaf: A flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:200109382.
Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:160508803.
Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher, V., & Frossard, P. (2022). DiGress: Discrete Denoising diffusion for graph generation. arXiv preprint arXiv:220914734.
Ragoza, M., Masuda, T., & Koes, D. R. (2022). Generating 3D molecules conditional on receptor binding sites with deep generative models. Chemical Science, 13(9), 2701–2713.
Luo, Y., & Ji, S. (2022). An autoregressive flow model for 3D molecular geometry generation from scratch. In International Conference on Learning Representations (ICLR).
Liu, M., Luo, Y., Uchino, K., Maruhashi, K., & Ji. S. (2022). Generating 3D molecules for target protein binding. arXiv preprint arXiv:220409410.
Hoogeboom, E., Satorras, V. G., Vignac, C., & Welling, M. (2022). Equivariant diffusion for molecule generation in 3D. In International Conference on Machine Learning: PMLR (pp. 8867–8887).
Huang, L., Zhang, H., Xu, T., & Wong, K.-C. (2022). MDM: Molecular diffusion model for 3D molecule generation. arXiv preprint arXiv:220905710.
Huang, L. (2023). A dual diffusion model enables 3D binding bioactive molecule generation and lead optimization given target pockets. bioRxiv 2023:2023.01.28.526011.
Xu, M., Powers, A., Dror, R., Ermon, S., & Leskovec, J. (2023). Geometric latent diffusion models for 3D molecule generation. arXiv preprint arXiv:230501140.
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10684–10695).
Zhang, Z., Min, Y., Zheng, S., & Liu, Q. (2023). Molecule generation for target protein binding with structural motifs. In The Eleventh International Conference on Learning Representations.
Huang, Y., Peng, X., Ma, J., & Zhang, M. (2022). 3Dlinker: An E(3) equivariant variational autoencoder for molecular linker design. arXiv preprint arXiv:220507309.
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. In Advances in neural information processing systems (Vol. 29).
Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative adversarial networks. arXiv preprint arXiv:170104862.
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN. arXiv preprint arXiv:170107875.
Levina, E., & Bickel, P. (2001). The earth mover’s distance is the mallows distance: Some insights from statistics. In Proceedings Eighth IEEE International Conference on Computer Vision (ICCV 2001) (pp. 251–256). IEEE.
Bai, Q. (2020). Research and development of MolAICal for drug design via deep learning and classical programming. arXiv preprint arXiv:200609747.
Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. In International Conference on Machine Learning: PMLR (pp. 1945–1954).
Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real NVP. arXiv:160508803.
Kingma, D. P., & Dhariwal, P. J. (2018). Glow: Generative flow with invertible 1x1 convolutions. Adv Neural Inf Process Syst. 2018;31.
Papamakarios G, Pavlakou T, Murray IJAinips. Masked autoregressive flow for density estimation. In Advances in neural information processing systems (Vol. 30).
Frey, N. C., & Gadepally, V., & Ramsundar, B. (2022). Fastflows: Flow-based models for molecular graph generation. arXiv preprint arXiv:220112419.
Madhawa, K., Ishiguro, K., Nakago, K., & Abe, M. GraphNVP: An invertible flow model for generating molecular graphs. arXiv preprint arXiv:190511600.
Welling, M., & The, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings of the 28th International conference on Machine Learning (ICML-11) (pp. 681–688).
Ho, J., Jain, A., & Abbeel, P. J. A. (2020). Denoising diffusion probabilistic models. arXiv:200611239.
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning: PMLR (pp. 2256–2565).
Song, Y., & Ermon, S. J. (2019). Generative modeling by estimating gradients of the data distribution. In Advances in neural information processing systems (Vol. 32).
Corso, G., Stärk, H., Jing, B., Barzilay, R., & Jaakkola, T. (2022). Diffdock: Diffusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:221001776.
Chen, X., Mishra, N., Rohaninejad, M., & Abbeel, P. (2018). Pixelsnail: An improved autoregressive generative model. In International Conference on Machine Learning: PMLR (pp. 864–872).
LeCun, Y., Chopra, S., Ranzato, M., & Huang, F.-J. (2007). Energy-based models in document recognition and computer vision. In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) (pp. 337–341). IEEE.
Xie, J., Zhu, S.-C., & Wu, Y. N. (2019). Learning energy-based spatial-temporal generative convnets for dynamic patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(2), 516–531.
Van Den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. In International Conference on Machine Learning: PMLR (pp. 1747–1756).
Gao, R., Song, Y., Poole, B., & Wu, Y. N., & Kingma, D. P. (2020). Learning energy-based models by diffusion recovery likelihood. arXiv preprint arXiv:201208125.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bai, Q., Ma, J., Xu, T. (2024). AI Deep Learning Generative Models for Drug Discovery. In: Lyu, Z. (eds) Applications of Generative AI. Springer, Cham. https://doi.org/10.1007/978-3-031-46238-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-46238-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46237-5
Online ISBN: 978-3-031-46238-2
eBook Packages: Computer ScienceComputer Science (R0)