Abstract
The de novo design of molecular structures using deep learning generative models introduces an encouraging solution to drug discovery in the face of the continuously increased cost of new drug development. From the generation of original texts, images, and videos, to the scratching of novel molecular structures the creativity of deep learning generative models exhibits the height machine intelligence can achieve. The purpose of this paper is to review the latest advances in generative chemistry which relies on generative modeling to expedite the drug discovery process. This review starts with a brief history of artificial intelligence in drug discovery to outline this emerging paradigm. Commonly used chemical databases, molecular representations, and tools in cheminformatics and machine learning are covered as the infrastructure for generative chemistry. The detailed discussions on utilizing cutting-edge generative architectures, including recurrent neural network, variational autoencoder, adversarial autoencoder, and generative adversarial network for compound generation are focused. Challenges and future perspectives follow.
Graphical abstract
Similar content being viewed by others
Data availability
N/A
Materials availability
N/A
Code availability
N/A
References
Wouters OJ, McKee M, Luyten J (2020) Estimated research and development investment needed to bring a new medicine to market, 2009-2018. Jama 323:844–853
DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33
Yasi EA, Kruyer NS, Peralta-Yahya P (2020) Advances in G protein-coupled receptor high-throughput screening. Curr Opin Biotechnol 64:210–217
Blay V, Tolani B, Ho SP, Arkin MR (2020) High-Throughput Screening: today’s biochemical and cell-based approaches. Drug Discov Today 25:1807–1821
Kroemer RT (2007) Structure-based drug design: docking and scoring. Curr Protein Pept Sci 8:312–328
Blundell TL (1996) Structure-based drug design. Nature 384:23
Bacilieri M, Moro S (2006) Ligand-based drug design methodologies in drug discovery process: an overview. Curr Drug Discov Technol 3:155–165
Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102
Bian Y-m, He X-b, Jing Y-k, Wang L-r, Wang J-m, Xie X-q (2019) Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation. Acta Pharmacol Sin 40:374–386
Bian Y, Feng Z, Yang P, Xie X-Q (2017) Integrated in silico fragment-based drug design: case study with allosteric modulators on metabotropic glutamate receptor 5. AAPS J 19:1235–1248
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690
Ge H, Bian Y, He X, Xie X-Q, Wang J (2019) Significantly different effects of tetrahydroberberrubine enantiomers on dopamine D1/D2 receptors revealed by experimental study and integrated in silico simulation. J Comput Aided Mol Des 33:447–459
Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219
Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450
Wieder M, Garon A, Perricone U, Boresch S, Seidel T, Almerico AM, Langer T (2017) Common hits approach: combining pharmacophore modeling and molecular dynamics simulations. J Chem Inf Model 57:365–385
Liu Z, Chen H, Wang P, Li Y, Wold EA, Leonard PG, Joseph S, Brasier AR, Tian B, Zhou J (2020) Discovery of Orally Bioavailable Chromone Derivatives as Potent and Selective BRD4 Inhibitors: Scaffolding Hopping, Optimization and Pharmacological Evaluation. J Med Chem 63(10):5242–5256
Hu Y, Stumpfe D, Bajorath JR (2017) Recent advances in scaffold hopping: miniperspective. J Med Chem 60:1238–1246
Muegge I, Mukherjee P (2016) An overview of molecular fingerprint similarity search in virtual screening. Expert Opin Drug Discovery 11:137–148
Fan Y, Zhang Y, Hua Y, Wang Y, Zhu L, Zhao J, Yang Y, Chen X, Lu S, Lu T (2019) Investigation of machine intelligence in compound cell activity classification. Mol Pharm 16:4472–4484
Minerali E, Foil DH, Zorn KM, Lane TR, Ekins S (2020) Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI). Mol Pharm 17(7):2628–2637
Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T (2019) Analyzing and improving the image quality of stylegan. arXiv preprint arXiv:1912.04958
Wen T-H, Gasic M, Mrksic N, Su P-H, Vandyke D, Young S (2015) Semantically conditioned lstm-based natural language generation for spoken dialogue systems. arXiv preprint arXiv:1508.01745
Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV, Terentiev VA, Polykovskiy DA, Kuznetsov MD, Asadulaev A (2019) Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol 37:1038–1040
Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T (2019) Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform 20:1878–1912
Chen D, Liu S, Kingsbury P, Sohn S, Storlie CB, Habermann EB, Naessens JM, Larson DW, Liu H (2019) Deep learning and alternative learning strategies for retrospective real-world clinical data. NPJ Digit Med 2:1–5
Lipinski C, Maltarollo V, Oliveira P, da Silva A, Honorio K (2019) Advances and perspectives in applying deep learning for drug design and discovery. Front Robot AI 6:108
Xu Y, Lin K, Wang S, Wang L, Cai C, Song C, Lai L, Pei J (2019) Deep learning for molecular generation. Future Med Chem 11:567–597
Elton DC, Boukouvalas Z, Fuge MD, Chung PW (2019) Deep learning for molecular design—a review of the state of the art. Mol Syst Des Eng 4:828–849
Hutchinson L, Steiert B, Soubret A, Wagg J, Phipps A, Peck R, Charoin JE, Ribba B (2019) Models and machines: how deep learning will take clinical pharmacology to the next level. CPT Pharmacometrics Syst Pharmacol 8:131
Turing AM (2009) Computing Machinery and Intelligence. In: Epstein R, Roberts G, Beber G (eds) Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer. Springer, Netherlands: Dordrecht, pp 23–65
Chollet F (2018) Deep learning with Python (Vol. 361). Manning, New York
Segler MH, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555:604–610
Lipinski CA (2016) Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 101:34–41
Bian Y, Jing Y, Wang L, Ma S, Jun JJ, Xie X-Q (2019) Prediction of orthosteric and allosteric regulations on cannabinoid receptors using supervised machine learning classifiers. Mol Pharm 16:2605–2615
Lo Y-C, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23:1538–1546
Jing Y, Bian Y, Hu Z, Wang L, Xie X-QS (2018) Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J 20:58
Bzdok D, Altman N, Krzywinski M (2018) Points of significance: statistics versus machine learning. Nat Methods 15:233–234
Yang X, Wang Y, Byrne R, Schneider G, Yang S (2019) Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 119:10520–10594
Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 18:463–477
Korotcov A, Tkachenko V, Russo DP, Ekins S (2017) Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol Pharm 14:4462–4475
Ma XH, Jia J, Zhu F, Xue Y, Li ZR, Chen YZ (2009) Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. Comb Chem High Throughput Screen 12:344–357
Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design-a review. Curr Top Med Chem 10:95–115
Fan F, Warshaviak DT, Hamadeh HK, Dunn RT (2019) The integration of pharmacophore-based 3D QSAR modeling and virtual screening in safety profiling: A case study to identify antagonistic activities against adenosine receptor, A2A, using 1,897 known drugs. PLoS One 14(1):e0204378
Gladysz R, Dos Santos FM, Langenaeker W, Thijs G, Augustyns K, De Winter H (2018) Spectrophores as one-dimensional descriptors calculated from three-dimensional atomic properties: applications ranging from scaffold hopping to multi-target virtual screening. J Cheminformatics 10:9
Nguyen TT, Nguyen ND, Nahavandi S (2020) Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications. IEEE Trans Cybern 50(9):3826–3839
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press. http://www.deeplearningbook.org
Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical, Learning: Data Mining Inference and Prediction (second ed.). Springer
LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86:2278–2324
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2661) Generative adversarial nets. arXiv preprint arXiv:1406
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242
(2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213
Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–D954
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082
Sterling T, Irwin JJ (2015) ZINC 15–ligand discovery for everyone. J Chem Inf Model 55:2324–2337
Huang Z, Mou L, Shen Q, Lu S, Li C, Liu X, Wang G, Li S, Geng L, Liu Y (2014) ASD v2. 0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res 42:D510–D516
Feng Z, Chen M, Shen M, Liang T, Chen H, Xie X-Q (2020) Pain-CKB, A Pain-Domain-Specific Chemogenomics Knowledgebase for Target Identification and Systems Pharmacology Research. J Chem Inf Model 60(10):4429–4435
Feng Z, Chen M, Liang T, Shen M, Chen H, Xie X-Q (2020) Virus-CKB: an integrated bioinformatics platform and analysis resource for COVID-19 research. Brief Bioinform:bbaa155. https://doi.org/10.1093/bib/bbaa155
Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36
OEChemTK (2010) version1.7.4.3;Open Eye Scientific Software Inc.: Santa Fe, NM
G. Landrum, RDKit: Open-Source Cheminformatics Software. http://www.rdkit.org/
O’Boyle NM (2012) Towards a Universal SMILES representation-a standard method to generate canonical SMILES based on the InChI. J Cheminformatics 4:22
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754
Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A (2004) Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures. J Chem Inf Comput Sci 44:1177–1185
Bian Y, Wang J, Jun JJ, Xie X-Q (2019) Deep convolutional generative adversarial network (dcGAN) models for screening and design of small molecules targeting cannabinoid receptors. Mol Pharm 16:4451–4460
Goh GB, Siegel C, Vishnu A, Hodas NO, Baker N (2017) Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models. arXiv preprint arXiv:1706.06689
De Cao N, Kipf T (2018) MolGAN: An implicit generative model for small molecular graphs. arXiv preprint arXiv:1805.11973
Wang R, Fang X, Lu Y, Yang C-Y, Wang S (2005) The PDBbind database: methodologies and updates. J Med Chem 48:4111–4119
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 47:D1102–D1109
Papadatos G, Davies M, Dedman N, Chambers J, Gaulton A, Siddle J, Koks R, Irvine SA, Pettersson J, Goncharoff N (2016) SureChEMBL: a large-scale, chemically annotated patent document database. Nucleic Acids Res 44:D1220–D1228
Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045–D1053
Ruddigkeit L, Van Deursen R, Blum LC, Reymond J-L (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52:2864–2875
Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) InChI, the IUPAC international chemical identifier. J Cheminformatics 7:23
Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280
Glen RC, Bender A, Arnby CH, Carlsson L, Boyer S, Smith J (2006) Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs 9:199
Pérez-Nueno VI, Rabal O, Borrell JI, Teixidó J (2009) APIF: a new interaction fingerprint based on atom pairs and its application to virtual screening. J Chem Inf Model 49:1245–1260
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminformatics 3:33
Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N, Kuhn S, Pluskal T, Rojas-Chertó M, Spjuth O (2017) The Chemistry Development Kit (CDK) v2. 0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminformatics 9:33
Ambure P, Aher RB, Roy K (2014) Recent advances in the open access cheminformatics toolkits, software tools, workflow environments, and databases. Computer-Aided Drug Discovery:257–296
Arabie P, Baier ND, Critchley CF, Keynes M (2006) Studies in classification, data analysis, and knowledge organization.
Warr WA (2012) Scientific workflow systems: pipeline pilot and KNIME. J Comput Aided Mol Des 26:801–804
Beisken S, Meinl T, Wiswedel B, de Figueiredo LF, Berthold M, Steinbeck C (2013) KNIME-CDK: workflow-driven cheminformatics. BMC Bioinf 14:257
Saubern S, Guha R, Baell J (2011) B., KNIME workflow to assess PAINS filters in SMARTS format. Comparison of RDKit and indigo cheminformatics libraries. Mol Inf 30:847–850
Roughley SD (2020) Five years of the KNIME vernalis cheminformatics community contribution. Curr Med Chem 27(38):6495–6522
Abadi M et al. (2016) TensorFlow: A system for large-scale machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 265−283
Etaati L (2019) Deep Learning Tools with Cognitive Toolkit (CNTK). Machine Learning with Microsoft Technologies. Apress, Berkeley, pp 287–302
Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bastien F, Bayer J, Belikov A, Belopolsky A, Bengio Y, Bergeron A, Bergstra J, Bisson V, Bleecher Snyder J, Bouchard N, Boulanger-Lewandowski N, Bouthillier X, Zhang Y (2016) Theano: A Python framework for fast computation of mathematical expressions. arXiv e-prints, arXiv-1605
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L (2019) PyTorch: an imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 2019, pp 8024–8035
Chollet F (2015) "keras." https://github.com/fchollet/keras
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S (2010) Recurrent neural network based language model. INTERSPEECH-2010 1045–1048
Mikolov T, Kombrink S, Burget L, Černockỳ J, Khudanpur S Extensions of recurrent neural network language model, in: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, 5528–5531
Mikolov T, Zweig G (2012) Context dependent recurrent neural network language model. 2012 IEEE Spoken Language Technology Workshop (SLT), 234-239
Hanson J, Yang Y, Paliwal K, Zhou Y (2017) Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks. Bioinformatics 33:685–692
Cheng J, Dong L, Lapata M (2016) Long short-term memory-networks for machine reading. arXiv preprint arXiv:1601.06733
Gupta A, Müller AT, Huisman BJ, Fuchs JA, Schneider P, Schneider G (2018) Generative recurrent networks for de novo drug design. Mol Inf 37:1700111
Bian Y, Xie X-QS (2018) Computational fragment-based drug design: current trends, strategies, and applications. AAPS J 20:59
Segler MH, Kogej T, Tyrchan C, Waller MP (2018) Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci 4:120–131
Moret M, Friedrich L, Grisoni F, Merk D, Schneider G (2020) Generative molecular design in low data regimes. Nat Mach Intell 2:171–180
Merk D, Friedrich L, Grisoni F, Schneider G (2018) De novo design of bioactive small molecules by artificial intelligence. Mol Inf 37:1700153
Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555
Zheng S, Yan X, Gu Q, Yang Y, Du Y, Lu Y, Xu J (2019) QBMG: quasi-biogenic molecule generator with deep recurrent neural network. J Cheminformatics 11:5
Kramer MA (1991) Nonlinear principal component analysis using autoassociative neural networks. AICHE J 37:233–243
Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114
Kingma DP, Welling M (2019) An introduction to variational autoencoders. arXiv preprint arXiv:1906.02691
Kingma DP, Mohamed S, Rezende DJ, Welling M (2014) Semi-supervised learning with deep generative models. Advances in neural information processing systems, 2014, pp 3581–3589
Khemakhem I, Kingma DP, Hyvärinen A (2019) Variational autoencoders and nonlinear ica: a unifying framework. arXiv preprint arXiv:1907.04809
Pu Y, Gan Z, Henao R, Yuan X, Li C., Stevens A, Carin L (2016) Variational autoencoder for deep learning of images, labels and captions. In Advances in neural information processing systems, arXiv preprint arXiv:1609.08976
Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4:268–276
Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H (2018) Application of generative autoencoder in de novo molecular design. Mol Inf 37:1700123
Sattarov B, Baskin II, Horvath D, Marcou G, Bjerrum EJ, Varnek A (2019) De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping. J Chem Inf Model 59:1182–1196
Mohammadi S, O’Dowd B, Paulitz-Erdmann C, Goerlitz L (2019) Penalized Variational Autoencoder for Molecular Design. ChemRxiv. https://doi.org/10.26434/chemrxiv.7977131.v2
Samanta B, De A, Jana G, Gómez V, Chattaraj P, Ganguly N, Gomez-Rodriguez M (2020) Nevae: A deep generative model for molecular graphs. J Mach Learn Res 21(114):1–33
Simonovsky M, Komodakis N (1802) GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders, 2018. arXiv:03480
Imrie F, Bradley AR, van der Schaar M, Deane CM (2020) Deep generative models for 3D linker design. J Chem Inf Model 60:1983–1995
Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B (2015) Adversarial autoencoders. arXiv preprint arXiv:1511.05644
Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A (2017) druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm 14:3098–3104
Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina P, Bozdaganyan M, Aliper A, Zhavoronkov A, Kadurin A (2018) Entangled conditional adversarial autoencoder for de novo drug discovery. Mol Pharm 15:4398–4405
Shayakhmetov R, Kuznetsov M, Zhebrak A, Kadurin A, Nikolenko S, Aliper A, Polykovskiy D (2020) Molecular generation for desired transcriptome changes with adversarial autoencoders. Front Pharmacol 11:269
Guimaraes GL, Sanchez-Lengeling B, Outeiral C, Farias PLC, Aspuru-Guzik A (2017) Objective-reinforced generative adversarial networks (organ) for sequence generation models. arXiv preprint arXiv:1705.10843
Maziarka Ł, Pocha A, Kaczmarczyk J, Rataj K, Danel T, Warchoł M (2020) Mol-CycleGAN: a generative model for molecular optimization. J Cheminformatics 12:1–18
Méndez-Lucio O, Baillif B, Clevert D-A, Rouquié D, Wichard J (2020) De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat Commun 11:1–10
Prykhodko O, Johansson SV, Kotsias P-C, Arús-Pous J, Bjerrum EJ, Engkvist O, Chen H (2019) A de novo molecular generation method using latent vector based generative adversarial network. J Cheminformatics 11:74
Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit:2261–2269
LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks 3361:310
Yu D, Wang H, Chen P, Wei Z (2014) Mixed pooling for convolutional neural networks. International conference on rough sets and knowledge technology, 2014. Springer, pp 364–375
Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 2015
Zhang H, Goodfellow I, Metaxas D, Odena A (2018) Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318
Li C, Wand M (2016) Precomputed real-time texture synthesis with markovian generative adversarial networks. European conference on computer vision, 2016. Springer, pp 702–716
Holt CA, Roth AE (2004) The Nash equilibrium: a perspective. Proc Natl Acad Sci 101:3999–4002
Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. arXiv preprint arXiv:1606.03498
Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv Neural Inf Proces Syst 2017:6626–6637
Sajjadi MS, Bachem O, Lucic M, Bousquet O, Gelly S (2018) Assessing generative models via precision and recall. Adv Neural Inf Proces Syst 2018:5228–5237
Gao W, Coley CW (2020) The synthesizability of molecules proposed by generative models. J Chem Inf Model 60(12):5714–5723
Coley CW, Rogers L, Green WH, Jensen KF (2018) SCScore: synthetic complexity learned from a reaction corpus. J Chem Inf Model 58:252–261
Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4:eaap7885
Sumita M, Yang X, Ishihara S, Tamura R, Tsuda K (2018) Hunting for organic molecules with artificial intelligence: molecules optimized for desired excitation energies. ACS Cent Sci 4:1126–1133
Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminformatics 1:8
Sanchez-Lengeling B, Aspuru-Guzik A (2018) Inverse molecular design using machine learning: generative models for matter engineering. Science 361:360–365
Vargesson N (2015) Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today 105:140–156
Polishchuk PG, Madzhidov TI, Varnek A (2013) Estimation of the size of drug-like chemical space based on GDB-17 data. J Comput Aided Mol Des 27:675–679
Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM (2019) Unified rational protein engineering with sequence-based deep representation learning. Nat Methods 16:1315–1322
Funding
The authors would like to acknowledge the funding support to the Xie laboratory from the NIH NIDA (P30 DA035778A1) and DOD (W81XWH-16-1-0490).
Author information
Authors and Affiliations
Contributions
Y.B. and X-Q.X. reviewed the recent progress in generative chemistry. Y.B. wrote the paper.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
N/A
Consent for publication
N/A
Competing interest
The authors declare no competing interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bian, Y., Xie, XQ. Generative chemistry: drug discovery with deep learning generative models. J Mol Model 27, 71 (2021). https://doi.org/10.1007/s00894-021-04674-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00894-021-04674-8