Nothing Special   »   [go: up one dir, main page]

Skip to main content

Formalizing Statistical Causality via Modal Logic

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

We propose a formal language for describing and explaining statistical causality. Concretely, we define Statistical Causality Language (StaCL) for expressing causal effects and specifying the requirements for causal inference. StaCL incorporates modal operators for interventions to express causal properties between probability distributions in different possible worlds in a Kripke model. We formalize axioms for probability distributions, interventions, and causal predicates using StaCL formulas. These axioms are expressive enough to derive the rules of Pearl’s do-calculus. Finally, we demonstrate by examples that StaCL can be used to specify and explain the correctness of statistical causal inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An undirected path in a causal diagram \( G _{w}\) is said to be d-separated by \(\boldsymbol{z}\) if it has either (a) a chain s.t. \(v\in \boldsymbol{z}\), (b) a fork s.t. \(v\in \boldsymbol{z}\), or (c) a collider s.t. \(v\not \in \boldsymbol{z}\cup \texttt{ANC}(\boldsymbol{z})\). \(\boldsymbol{x}\) and \(\boldsymbol{y}\) are said to be d-separated by \(\boldsymbol{z}\) if all undirected paths between variables in \(\boldsymbol{x}\) and in \(\boldsymbol{z}\) are d-separated by \(\boldsymbol{z}\).

References

  1. Barbero, F., Sandu, G.: Team semantics for interventionist counterfactuals: observations vs. interventions. J. Philos. Log. 50(3), 471–521 (2021). https://doi.org/10.1007/s10992-020-09573-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbero, F., Schulz, K., Smets, S., Velázquez-Quesada, F.R., Xie, K.: Thinking about causation: a causal language with epistemic operators. In: Martins, M.A., Sedlár, I. (eds.) DaLi 2020. LNCS, vol. 12569, pp. 17–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65840-3_2

    Chapter  Google Scholar 

  3. Bochman, A.: A Logical Theory of Causality. MIT Press, Cambridge (2021)

    Book  MATH  Google Scholar 

  4. Bochman, A., Lifschitz, V.: Pearl’s causality in a logical setting. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1446–1452. AAAI Press (2015), http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9686

  5. Corander, J., Hyttinen, A., Kontinen, J., Pensar, J., Väänänen, J.: A logical approach to context-specific independence. Ann. Pure Appl. Log. 170(9), 975–992 (2019). https://doi.org/10.1016/j.apal.2019.04.004

    Article  MathSciNet  MATH  Google Scholar 

  6. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and dependence via multiteam semantics. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 271–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30024-5_15

    Chapter  MATH  Google Scholar 

  7. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team semantics. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp. 186–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6_11

    Chapter  MATH  Google Scholar 

  8. Fernandes-Taylor, S., Hyun, J.K., Reeder, R.N., Harris, A.H.: Common statistical and research design problems in manuscripts submitted to high-impact medical journals. BMC Res. Notes 4(1), 304 (2011)

    Article  Google Scholar 

  9. Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals. Found. Sci. 3, 151–182 (1998)

    Article  MathSciNet  Google Scholar 

  10. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Intell. Res. 12, 317–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Proceedings of the IJCAI 2015, pp. 3022–3033. AAAI Press (2015)

    Google Scholar 

  12. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach - part II: explanations. In: Proceedings of the IJCAI 2001, pp. 27–34. Morgan Kaufmann (2001)

    Google Scholar 

  13. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach: part 1: causes. In: Proceedings of the UAI 2001, pp. 194–202. Morgan Kaufmann (2001)

    Google Scholar 

  14. Hirvonen, Å., Kontinen, J., Pauly, A.: Continuous team semantics. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 262–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6_16

    Chapter  Google Scholar 

  15. Hodges, W.: Compositional semantics for a language of imperfect information. Log. J. IGPL 5(4), 539–563 (1997). https://doi.org/10.1093/jigpal/5.4.539

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, Y., Valtorta, M.: Pearl’s calculus of intervention is complete. In: Proceedings of the UAI 2006, pp. 217–224. AUAI Press (2006)

    Google Scholar 

  17. Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: conflict resolution with answer set programming. In: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI 2014), pp. 340–349. AUAI Press (2014)

    Google Scholar 

  18. Hyttinen, A., Eberhardt, F., Järvisalo, M.: Do-calculus when the true graph is unknown. In: Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence (UAI 2015), pp. 395–404. AUAI Press (2015)

    Google Scholar 

  19. Ibeling, D., Icard, T.: Probabilistic reasoning across the causal hierarchy. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020), pp. 10170–10177. AAAI Press (2020). http://aaai.org/ojs/index.php/AAAI/article/view/6577

  20. Kawamoto, Y.: Statistical epistemic logic. In: Alvim, M.S., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds.) The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy. LNCS, vol. 11760, pp. 344–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31175-9_20

    Chapter  Google Scholar 

  21. Kawamoto, Y.: Towards logical specification of statistical machine learning. In: Proceedings of the SEFM, pp. 293–311 (2019). https://doi.org/10.1007/978-3-030-30446-1_16

  22. Kawamoto, Y.: An epistemic approach to the formal specification of statistical machine learning. Softw. Syst. Model. 20(2), 293–310 (2020). https://doi.org/10.1007/s10270-020-00825-2

    Article  Google Scholar 

  23. Kawamoto, Y., Mano, K., Sakurada, H., Hagiya, M.: Partial knowledge of functions and verification of anonymity. Trans. Jpn. Soc. Industr. Appl. Math. 17(4), 559–576 (2007). https://doi.org/10.11540/jsiamt.17.4_559

    Article  Google Scholar 

  24. Kawamoto, Y., Sato, T., Suenaga, K.: Formalizing statistical beliefs in hypothesis testing using program logic. In: Proceedings of the KR 2021, pp. 411–421 (2021). https://doi.org/10.24963/kr.2021/39

  25. Kawamoto, Y., Sato, T., Suenaga, K.: Formalizing statistical causality via modal logic. CoRR abs/2210.16751 (2022). https://doi.org/10.48550/arXiv.2210.16751

  26. Kawamoto, Y., Sato, T., Suenaga, K.: Sound and relatively complete belief Hoare logic for statistical hypothesis testing programs. CoRR abs/2208.07074 (2022)

    Google Scholar 

  27. Makin, T.R., de Xivry, J.J.O.: Science forum: Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. Elife 8, e48175 (2019)

    Article  Google Scholar 

  28. McCain, N., Turner, H.: Causal theories of action and change. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference (AAAI 1997/IAAI 1997), pp. 460–465. AAAI Press/The MIT Press (1997)

    Google Scholar 

  29. Moher, D., et al.: Consort 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int. J. Surg. 10(1), 28–55 (2012)

    Article  Google Scholar 

  30. Pearl, J.: Causal diagrams for empirical research. Biometrika 82(4), 669–688 (1995). http://www.jstor.org/stable/2337329

  31. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  32. Rückschloß, K., Weitkämper, F.: Exploiting the full power of Pearl’s causality in probabilistic logic programming. In: Proceedings of the 9th Workshop on Probabilistic Logic Programming (PLP 2022). CEUR Workshop Proceedings, vol. 3193. CEUR-WS.org (2022). http://ceur-ws.org/Vol-3193/paper1PLP.pdf

  33. Shpitser, I., Pearl, J.: Identification of conditional interventional distributions. In: Proceedings of the UAI 2006, pp. 437–444. AUAI Press (2006)

    Google Scholar 

  34. Simpson, E.H.: The interpretation of interaction in contingency tables. J. Roy. Stat. Soc. Ser. B (Methodol.) 13(2), 238–241 (1951). http://www.jstor.org/stable/2984065

  35. Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Verma, T., Pearl, J.: Causal networks: semantics and expressiveness. In: Proceedings of the UAI 1988, pp. 69–78. North-Holland (1988)

    Google Scholar 

  37. Von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gøtzsche, P.C., Vandenbroucke, J.P.: The strengthening the reporting of observational studies in epidemiology (strobe) statement: guidelines for reporting observational studies. Bull. World Health Organ. 85, 867–872 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Kenji Fukumizu for providing helpful information on the literature on causal inference. The authors are supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST. Yusuke Kawamoto is supported by JST, PRESTO Grant Number JPMJPR2022, Japan, and by JSPS KAKENHI Grant Number 21K12028, Japan. Tetsuya Sato is supported by JSPS KAKENHI Grant Number 20K19775, Japan. Kohei Suenaga is supported by JST CREST Grant Number JPMJCR2012, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Kawamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawamoto, Y., Sato, T., Suenaga, K. (2023). Formalizing Statistical Causality via Modal Logic. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics