Abstract
We propose a formal language for describing and explaining statistical causality. Concretely, we define Statistical Causality Language (StaCL) for expressing causal effects and specifying the requirements for causal inference. StaCL incorporates modal operators for interventions to express causal properties between probability distributions in different possible worlds in a Kripke model. We formalize axioms for probability distributions, interventions, and causal predicates using StaCL formulas. These axioms are expressive enough to derive the rules of Pearl’s do-calculus. Finally, we demonstrate by examples that StaCL can be used to specify and explain the correctness of statistical causal inference.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An undirected path in a causal diagram \( G _{w}\) is said to be d-separated by \(\boldsymbol{z}\) if it has either (a) a chain
s.t. \(v\in \boldsymbol{z}\), (b) a fork
s.t. \(v\in \boldsymbol{z}\), or (c) a collider
s.t. \(v\not \in \boldsymbol{z}\cup \texttt{ANC}(\boldsymbol{z})\). \(\boldsymbol{x}\) and \(\boldsymbol{y}\) are said to be d-separated by \(\boldsymbol{z}\) if all undirected paths between variables in \(\boldsymbol{x}\) and in \(\boldsymbol{z}\) are d-separated by \(\boldsymbol{z}\).
References
Barbero, F., Sandu, G.: Team semantics for interventionist counterfactuals: observations vs. interventions. J. Philos. Log. 50(3), 471–521 (2021). https://doi.org/10.1007/s10992-020-09573-6
Barbero, F., Schulz, K., Smets, S., Velázquez-Quesada, F.R., Xie, K.: Thinking about causation: a causal language with epistemic operators. In: Martins, M.A., Sedlár, I. (eds.) DaLi 2020. LNCS, vol. 12569, pp. 17–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65840-3_2
Bochman, A.: A Logical Theory of Causality. MIT Press, Cambridge (2021)
Bochman, A., Lifschitz, V.: Pearl’s causality in a logical setting. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1446–1452. AAAI Press (2015), http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9686
Corander, J., Hyttinen, A., Kontinen, J., Pensar, J., Väänänen, J.: A logical approach to context-specific independence. Ann. Pure Appl. Log. 170(9), 975–992 (2019). https://doi.org/10.1016/j.apal.2019.04.004
Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and dependence via multiteam semantics. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 271–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30024-5_15
Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team semantics. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp. 186–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6_11
Fernandes-Taylor, S., Hyun, J.K., Reeder, R.N., Harris, A.H.: Common statistical and research design problems in manuscripts submitted to high-impact medical journals. BMC Res. Notes 4(1), 304 (2011)
Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals. Found. Sci. 3, 151–182 (1998)
Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Intell. Res. 12, 317–337 (2000)
Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Proceedings of the IJCAI 2015, pp. 3022–3033. AAAI Press (2015)
Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach - part II: explanations. In: Proceedings of the IJCAI 2001, pp. 27–34. Morgan Kaufmann (2001)
Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach: part 1: causes. In: Proceedings of the UAI 2001, pp. 194–202. Morgan Kaufmann (2001)
Hirvonen, Å., Kontinen, J., Pauly, A.: Continuous team semantics. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 262–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6_16
Hodges, W.: Compositional semantics for a language of imperfect information. Log. J. IGPL 5(4), 539–563 (1997). https://doi.org/10.1093/jigpal/5.4.539
Huang, Y., Valtorta, M.: Pearl’s calculus of intervention is complete. In: Proceedings of the UAI 2006, pp. 217–224. AUAI Press (2006)
Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: conflict resolution with answer set programming. In: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI 2014), pp. 340–349. AUAI Press (2014)
Hyttinen, A., Eberhardt, F., Järvisalo, M.: Do-calculus when the true graph is unknown. In: Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence (UAI 2015), pp. 395–404. AUAI Press (2015)
Ibeling, D., Icard, T.: Probabilistic reasoning across the causal hierarchy. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020), pp. 10170–10177. AAAI Press (2020). http://aaai.org/ojs/index.php/AAAI/article/view/6577
Kawamoto, Y.: Statistical epistemic logic. In: Alvim, M.S., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds.) The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy. LNCS, vol. 11760, pp. 344–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31175-9_20
Kawamoto, Y.: Towards logical specification of statistical machine learning. In: Proceedings of the SEFM, pp. 293–311 (2019). https://doi.org/10.1007/978-3-030-30446-1_16
Kawamoto, Y.: An epistemic approach to the formal specification of statistical machine learning. Softw. Syst. Model. 20(2), 293–310 (2020). https://doi.org/10.1007/s10270-020-00825-2
Kawamoto, Y., Mano, K., Sakurada, H., Hagiya, M.: Partial knowledge of functions and verification of anonymity. Trans. Jpn. Soc. Industr. Appl. Math. 17(4), 559–576 (2007). https://doi.org/10.11540/jsiamt.17.4_559
Kawamoto, Y., Sato, T., Suenaga, K.: Formalizing statistical beliefs in hypothesis testing using program logic. In: Proceedings of the KR 2021, pp. 411–421 (2021). https://doi.org/10.24963/kr.2021/39
Kawamoto, Y., Sato, T., Suenaga, K.: Formalizing statistical causality via modal logic. CoRR abs/2210.16751 (2022). https://doi.org/10.48550/arXiv.2210.16751
Kawamoto, Y., Sato, T., Suenaga, K.: Sound and relatively complete belief Hoare logic for statistical hypothesis testing programs. CoRR abs/2208.07074 (2022)
Makin, T.R., de Xivry, J.J.O.: Science forum: Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. Elife 8, e48175 (2019)
McCain, N., Turner, H.: Causal theories of action and change. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference (AAAI 1997/IAAI 1997), pp. 460–465. AAAI Press/The MIT Press (1997)
Moher, D., et al.: Consort 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int. J. Surg. 10(1), 28–55 (2012)
Pearl, J.: Causal diagrams for empirical research. Biometrika 82(4), 669–688 (1995). http://www.jstor.org/stable/2337329
Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
Rückschloß, K., Weitkämper, F.: Exploiting the full power of Pearl’s causality in probabilistic logic programming. In: Proceedings of the 9th Workshop on Probabilistic Logic Programming (PLP 2022). CEUR Workshop Proceedings, vol. 3193. CEUR-WS.org (2022). http://ceur-ws.org/Vol-3193/paper1PLP.pdf
Shpitser, I., Pearl, J.: Identification of conditional interventional distributions. In: Proceedings of the UAI 2006, pp. 437–444. AUAI Press (2006)
Simpson, E.H.: The interpretation of interaction in contingency tables. J. Roy. Stat. Soc. Ser. B (Methodol.) 13(2), 238–241 (1951). http://www.jstor.org/stable/2984065
Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205 (2015)
Verma, T., Pearl, J.: Causal networks: semantics and expressiveness. In: Proceedings of the UAI 1988, pp. 69–78. North-Holland (1988)
Von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gøtzsche, P.C., Vandenbroucke, J.P.: The strengthening the reporting of observational studies in epidemiology (strobe) statement: guidelines for reporting observational studies. Bull. World Health Organ. 85, 867–872 (2007)
Acknowledgements
We thank Kenji Fukumizu for providing helpful information on the literature on causal inference. The authors are supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST. Yusuke Kawamoto is supported by JST, PRESTO Grant Number JPMJPR2022, Japan, and by JSPS KAKENHI Grant Number 21K12028, Japan. Tetsuya Sato is supported by JSPS KAKENHI Grant Number 20K19775, Japan. Kohei Suenaga is supported by JST CREST Grant Number JPMJCR2012, Japan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kawamoto, Y., Sato, T., Suenaga, K. (2023). Formalizing Statistical Causality via Modal Logic. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_46
Download citation
DOI: https://doi.org/10.1007/978-3-031-43619-2_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43618-5
Online ISBN: 978-3-031-43619-2
eBook Packages: Computer ScienceComputer Science (R0)